MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oexpneg Structured version   Unicode version

Theorem oexpneg 13908
Description: The exponential of the negative of a number, when the exponent is odd. (Contributed by Mario Carneiro, 25-Apr-2015.)
Assertion
Ref Expression
oexpneg  |-  ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  -> 
( -u A ^ N
)  =  -u ( A ^ N ) )

Proof of Theorem oexpneg
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 nnz 10886 . . . . 5  |-  ( N  e.  NN  ->  N  e.  ZZ )
2 odd2np1 13905 . . . . 5  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
31, 2syl 16 . . . 4  |-  ( N  e.  NN  ->  ( -.  2  ||  N  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
43biimpa 484 . . 3  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N )
543adant1 1014 . 2  |-  ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  ->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N )
6 simpl1 999 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  ->  A  e.  CC )
7 simprr 756 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( ( 2  x.  n )  +  1 )  =  N )
8 simpl2 1000 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  ->  N  e.  NN )
98nncnd 10552 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  ->  N  e.  CC )
10 ax-1cn 9550 . . . . . . . . . 10  |-  1  e.  CC
1110a1i 11 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
1  e.  CC )
12 2z 10896 . . . . . . . . . . 11  |-  2  e.  ZZ
13 simprl 755 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  ->  n  e.  ZZ )
14 zmulcl 10911 . . . . . . . . . . 11  |-  ( ( 2  e.  ZZ  /\  n  e.  ZZ )  ->  ( 2  x.  n
)  e.  ZZ )
1512, 13, 14sylancr 663 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( 2  x.  n
)  e.  ZZ )
1615zcnd 10967 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( 2  x.  n
)  e.  CC )
179, 11, 16subadd2d 9949 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( ( N  - 
1 )  =  ( 2  x.  n )  <-> 
( ( 2  x.  n )  +  1 )  =  N ) )
187, 17mpbird 232 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( N  -  1 )  =  ( 2  x.  n ) )
19 nnm1nn0 10837 . . . . . . . 8  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
208, 19syl 16 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( N  -  1 )  e.  NN0 )
2118, 20eqeltrrd 2556 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( 2  x.  n
)  e.  NN0 )
226, 21expcld 12278 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( A ^ (
2  x.  n ) )  e.  CC )
2322, 6mulneg2d 10010 . . . 4  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( ( A ^
( 2  x.  n
) )  x.  -u A
)  =  -u (
( A ^ (
2  x.  n ) )  x.  A ) )
24 sqneg 12196 . . . . . . . . 9  |-  ( A  e.  CC  ->  ( -u A ^ 2 )  =  ( A ^
2 ) )
256, 24syl 16 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( -u A ^ 2 )  =  ( A ^ 2 ) )
2625oveq1d 6299 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( ( -u A ^ 2 ) ^
n )  =  ( ( A ^ 2 ) ^ n ) )
276negcld 9917 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  ->  -u A  e.  CC )
28 2re 10605 . . . . . . . . . . 11  |-  2  e.  RR
2928a1i 11 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
2  e.  RR )
3013zred 10966 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  ->  n  e.  RR )
31 2pos 10627 . . . . . . . . . . 11  |-  0  <  2
3231a1i 11 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
0  <  2 )
3321nn0ge0d 10855 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
0  <_  ( 2  x.  n ) )
34 prodge0 10389 . . . . . . . . . 10  |-  ( ( ( 2  e.  RR  /\  n  e.  RR )  /\  ( 0  <  2  /\  0  <_ 
( 2  x.  n
) ) )  -> 
0  <_  n )
3529, 30, 32, 33, 34syl22anc 1229 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
0  <_  n )
36 elnn0z 10877 . . . . . . . . 9  |-  ( n  e.  NN0  <->  ( n  e.  ZZ  /\  0  <_  n ) )
3713, 35, 36sylanbrc 664 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  ->  n  e.  NN0 )
38 2nn0 10812 . . . . . . . . 9  |-  2  e.  NN0
3938a1i 11 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
2  e.  NN0 )
4027, 37, 39expmuld 12281 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( -u A ^ (
2  x.  n ) )  =  ( (
-u A ^ 2 ) ^ n ) )
416, 37, 39expmuld 12281 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( A ^ (
2  x.  n ) )  =  ( ( A ^ 2 ) ^ n ) )
4226, 40, 413eqtr4d 2518 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( -u A ^ (
2  x.  n ) )  =  ( A ^ ( 2  x.  n ) ) )
4342oveq1d 6299 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( ( -u A ^ ( 2  x.  n ) )  x.  -u A )  =  ( ( A ^ (
2  x.  n ) )  x.  -u A
) )
4427, 21expp1d 12279 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( -u A ^ (
( 2  x.  n
)  +  1 ) )  =  ( (
-u A ^ (
2  x.  n ) )  x.  -u A
) )
457oveq2d 6300 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( -u A ^ (
( 2  x.  n
)  +  1 ) )  =  ( -u A ^ N ) )
4644, 45eqtr3d 2510 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( ( -u A ^ ( 2  x.  n ) )  x.  -u A )  =  (
-u A ^ N
) )
4743, 46eqtr3d 2510 . . . 4  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( ( A ^
( 2  x.  n
) )  x.  -u A
)  =  ( -u A ^ N ) )
4823, 47eqtr3d 2510 . . 3  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  ->  -u ( ( A ^
( 2  x.  n
) )  x.  A
)  =  ( -u A ^ N ) )
496, 21expp1d 12279 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( A ^ (
( 2  x.  n
)  +  1 ) )  =  ( ( A ^ ( 2  x.  n ) )  x.  A ) )
507oveq2d 6300 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( A ^ (
( 2  x.  n
)  +  1 ) )  =  ( A ^ N ) )
5149, 50eqtr3d 2510 . . . 4  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( ( A ^
( 2  x.  n
) )  x.  A
)  =  ( A ^ N ) )
5251negeqd 9814 . . 3  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  ->  -u ( ( A ^
( 2  x.  n
) )  x.  A
)  =  -u ( A ^ N ) )
5348, 52eqtr3d 2510 . 2  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( -u A ^ N
)  =  -u ( A ^ N ) )
545, 53rexlimddv 2959 1  |-  ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  -> 
( -u A ^ N
)  =  -u ( A ^ N ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   E.wrex 2815   class class class wbr 4447  (class class class)co 6284   CCcc 9490   RRcr 9491   0cc0 9492   1c1 9493    + caddc 9495    x. cmul 9497    < clt 9628    <_ cle 9629    - cmin 9805   -ucneg 9806   NNcn 10536   2c2 10585   NN0cn0 10795   ZZcz 10864   ^cexp 12134    || cdivides 13847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-2nd 6785  df-recs 7042  df-rdg 7076  df-er 7311  df-en 7517  df-dom 7518  df-sdom 7519  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-div 10207  df-nn 10537  df-2 10594  df-n0 10796  df-z 10865  df-uz 11083  df-seq 12076  df-exp 12135  df-dvds 13848
This theorem is referenced by:  dcubic1lem  22930  dcubic2  22931  mcubic  22934  lgseisenlem1  23380  lgseisenlem4  23383  m1lgs  23393  stirlinglem5  31406
  Copyright terms: Public domain W3C validator