MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oewordri Structured version   Unicode version

Theorem oewordri 7131
Description: Weak ordering property of ordinal exponentiation. Proposition 8.35 of [TakeutiZaring] p. 68. (Contributed by NM, 6-Jan-2005.)
Assertion
Ref Expression
oewordri  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  ->  ( A  ^o  C
)  C_  ( B  ^o  C ) ) )

Proof of Theorem oewordri
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6198 . . . . 5  |-  ( x  =  (/)  ->  ( A  ^o  x )  =  ( A  ^o  (/) ) )
2 oveq2 6198 . . . . 5  |-  ( x  =  (/)  ->  ( B  ^o  x )  =  ( B  ^o  (/) ) )
31, 2sseq12d 3483 . . . 4  |-  ( x  =  (/)  ->  ( ( A  ^o  x ) 
C_  ( B  ^o  x )  <->  ( A  ^o  (/) )  C_  ( B  ^o  (/) ) ) )
4 oveq2 6198 . . . . 5  |-  ( x  =  y  ->  ( A  ^o  x )  =  ( A  ^o  y
) )
5 oveq2 6198 . . . . 5  |-  ( x  =  y  ->  ( B  ^o  x )  =  ( B  ^o  y
) )
64, 5sseq12d 3483 . . . 4  |-  ( x  =  y  ->  (
( A  ^o  x
)  C_  ( B  ^o  x )  <->  ( A  ^o  y )  C_  ( B  ^o  y ) ) )
7 oveq2 6198 . . . . 5  |-  ( x  =  suc  y  -> 
( A  ^o  x
)  =  ( A  ^o  suc  y ) )
8 oveq2 6198 . . . . 5  |-  ( x  =  suc  y  -> 
( B  ^o  x
)  =  ( B  ^o  suc  y ) )
97, 8sseq12d 3483 . . . 4  |-  ( x  =  suc  y  -> 
( ( A  ^o  x )  C_  ( B  ^o  x )  <->  ( A  ^o  suc  y )  C_  ( B  ^o  suc  y
) ) )
10 oveq2 6198 . . . . 5  |-  ( x  =  C  ->  ( A  ^o  x )  =  ( A  ^o  C
) )
11 oveq2 6198 . . . . 5  |-  ( x  =  C  ->  ( B  ^o  x )  =  ( B  ^o  C
) )
1210, 11sseq12d 3483 . . . 4  |-  ( x  =  C  ->  (
( A  ^o  x
)  C_  ( B  ^o  x )  <->  ( A  ^o  C )  C_  ( B  ^o  C ) ) )
13 onelon 4842 . . . . . . 7  |-  ( ( B  e.  On  /\  A  e.  B )  ->  A  e.  On )
14 oe0 7062 . . . . . . 7  |-  ( A  e.  On  ->  ( A  ^o  (/) )  =  1o )
1513, 14syl 16 . . . . . 6  |-  ( ( B  e.  On  /\  A  e.  B )  ->  ( A  ^o  (/) )  =  1o )
16 oe0 7062 . . . . . . 7  |-  ( B  e.  On  ->  ( B  ^o  (/) )  =  1o )
1716adantr 465 . . . . . 6  |-  ( ( B  e.  On  /\  A  e.  B )  ->  ( B  ^o  (/) )  =  1o )
1815, 17eqtr4d 2495 . . . . 5  |-  ( ( B  e.  On  /\  A  e.  B )  ->  ( A  ^o  (/) )  =  ( B  ^o  (/) ) )
19 eqimss 3506 . . . . 5  |-  ( ( A  ^o  (/) )  =  ( B  ^o  (/) )  -> 
( A  ^o  (/) )  C_  ( B  ^o  (/) ) )
2018, 19syl 16 . . . 4  |-  ( ( B  e.  On  /\  A  e.  B )  ->  ( A  ^o  (/) )  C_  ( B  ^o  (/) ) )
21 simpl 457 . . . . . 6  |-  ( ( B  e.  On  /\  A  e.  B )  ->  B  e.  On )
22 onelss 4859 . . . . . . 7  |-  ( B  e.  On  ->  ( A  e.  B  ->  A 
C_  B ) )
2322imp 429 . . . . . 6  |-  ( ( B  e.  On  /\  A  e.  B )  ->  A  C_  B )
2413, 21, 23jca31 534 . . . . 5  |-  ( ( B  e.  On  /\  A  e.  B )  ->  ( ( A  e.  On  /\  B  e.  On )  /\  A  C_  B ) )
25 oecl 7077 . . . . . . . . . . . . . 14  |-  ( ( A  e.  On  /\  y  e.  On )  ->  ( A  ^o  y
)  e.  On )
26253adant2 1007 . . . . . . . . . . . . 13  |-  ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  ->  ( A  ^o  y )  e.  On )
27 oecl 7077 . . . . . . . . . . . . . 14  |-  ( ( B  e.  On  /\  y  e.  On )  ->  ( B  ^o  y
)  e.  On )
28273adant1 1006 . . . . . . . . . . . . 13  |-  ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  ->  ( B  ^o  y )  e.  On )
29 simp1 988 . . . . . . . . . . . . 13  |-  ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  ->  A  e.  On )
30 omwordri 7111 . . . . . . . . . . . . 13  |-  ( ( ( A  ^o  y
)  e.  On  /\  ( B  ^o  y
)  e.  On  /\  A  e.  On )  ->  ( ( A  ^o  y )  C_  ( B  ^o  y )  -> 
( ( A  ^o  y )  .o  A
)  C_  ( ( B  ^o  y )  .o  A ) ) )
3126, 28, 29, 30syl3anc 1219 . . . . . . . . . . . 12  |-  ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  ->  (
( A  ^o  y
)  C_  ( B  ^o  y )  ->  (
( A  ^o  y
)  .o  A ) 
C_  ( ( B  ^o  y )  .o  A ) ) )
3231imp 429 . . . . . . . . . . 11  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  /\  ( A  ^o  y
)  C_  ( B  ^o  y ) )  -> 
( ( A  ^o  y )  .o  A
)  C_  ( ( B  ^o  y )  .o  A ) )
3332adantrl 715 . . . . . . . . . 10  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  /\  ( A  C_  B  /\  ( A  ^o  y
)  C_  ( B  ^o  y ) ) )  ->  ( ( A  ^o  y )  .o  A )  C_  (
( B  ^o  y
)  .o  A ) )
34 omwordi 7110 . . . . . . . . . . . . 13  |-  ( ( A  e.  On  /\  B  e.  On  /\  ( B  ^o  y )  e.  On )  ->  ( A  C_  B  ->  (
( B  ^o  y
)  .o  A ) 
C_  ( ( B  ^o  y )  .o  B ) ) )
3528, 34syld3an3 1264 . . . . . . . . . . . 12  |-  ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  ->  ( A  C_  B  ->  (
( B  ^o  y
)  .o  A ) 
C_  ( ( B  ^o  y )  .o  B ) ) )
3635imp 429 . . . . . . . . . . 11  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  /\  A  C_  B )  ->  ( ( B  ^o  y )  .o  A )  C_  (
( B  ^o  y
)  .o  B ) )
3736adantrr 716 . . . . . . . . . 10  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  /\  ( A  C_  B  /\  ( A  ^o  y
)  C_  ( B  ^o  y ) ) )  ->  ( ( B  ^o  y )  .o  A )  C_  (
( B  ^o  y
)  .o  B ) )
3833, 37sstrd 3464 . . . . . . . . 9  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  /\  ( A  C_  B  /\  ( A  ^o  y
)  C_  ( B  ^o  y ) ) )  ->  ( ( A  ^o  y )  .o  A )  C_  (
( B  ^o  y
)  .o  B ) )
39 oesuc 7067 . . . . . . . . . . 11  |-  ( ( A  e.  On  /\  y  e.  On )  ->  ( A  ^o  suc  y )  =  ( ( A  ^o  y
)  .o  A ) )
40393adant2 1007 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  ->  ( A  ^o  suc  y )  =  ( ( A  ^o  y )  .o  A ) )
4140adantr 465 . . . . . . . . 9  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  /\  ( A  C_  B  /\  ( A  ^o  y
)  C_  ( B  ^o  y ) ) )  ->  ( A  ^o  suc  y )  =  ( ( A  ^o  y
)  .o  A ) )
42 oesuc 7067 . . . . . . . . . . 11  |-  ( ( B  e.  On  /\  y  e.  On )  ->  ( B  ^o  suc  y )  =  ( ( B  ^o  y
)  .o  B ) )
43423adant1 1006 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  ->  ( B  ^o  suc  y )  =  ( ( B  ^o  y )  .o  B ) )
4443adantr 465 . . . . . . . . 9  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  /\  ( A  C_  B  /\  ( A  ^o  y
)  C_  ( B  ^o  y ) ) )  ->  ( B  ^o  suc  y )  =  ( ( B  ^o  y
)  .o  B ) )
4538, 41, 443sstr4d 3497 . . . . . . . 8  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  /\  ( A  C_  B  /\  ( A  ^o  y
)  C_  ( B  ^o  y ) ) )  ->  ( A  ^o  suc  y )  C_  ( B  ^o  suc  y ) )
4645exp520 1209 . . . . . . 7  |-  ( A  e.  On  ->  ( B  e.  On  ->  ( y  e.  On  ->  ( A  C_  B  ->  ( ( A  ^o  y
)  C_  ( B  ^o  y )  ->  ( A  ^o  suc  y ) 
C_  ( B  ^o  suc  y ) ) ) ) ) )
4746com3r 79 . . . . . 6  |-  ( y  e.  On  ->  ( A  e.  On  ->  ( B  e.  On  ->  ( A  C_  B  ->  ( ( A  ^o  y
)  C_  ( B  ^o  y )  ->  ( A  ^o  suc  y ) 
C_  ( B  ^o  suc  y ) ) ) ) ) )
4847imp4c 591 . . . . 5  |-  ( y  e.  On  ->  (
( ( A  e.  On  /\  B  e.  On )  /\  A  C_  B )  ->  (
( A  ^o  y
)  C_  ( B  ^o  y )  ->  ( A  ^o  suc  y ) 
C_  ( B  ^o  suc  y ) ) ) )
4924, 48syl5 32 . . . 4  |-  ( y  e.  On  ->  (
( B  e.  On  /\  A  e.  B )  ->  ( ( A  ^o  y )  C_  ( B  ^o  y
)  ->  ( A  ^o  suc  y )  C_  ( B  ^o  suc  y
) ) ) )
5013ancri 552 . . . . 5  |-  ( ( B  e.  On  /\  A  e.  B )  ->  ( A  e.  On  /\  ( B  e.  On  /\  A  e.  B ) ) )
51 vex 3071 . . . . . . . . . . . . 13  |-  x  e. 
_V
52 limelon 4880 . . . . . . . . . . . . 13  |-  ( ( x  e.  _V  /\  Lim  x )  ->  x  e.  On )
5351, 52mpan 670 . . . . . . . . . . . 12  |-  ( Lim  x  ->  x  e.  On )
54 0ellim 4879 . . . . . . . . . . . 12  |-  ( Lim  x  ->  (/)  e.  x
)
55 oe0m1 7061 . . . . . . . . . . . . 13  |-  ( x  e.  On  ->  ( (/) 
e.  x  <->  ( (/)  ^o  x
)  =  (/) ) )
5655biimpa 484 . . . . . . . . . . . 12  |-  ( ( x  e.  On  /\  (/) 
e.  x )  -> 
( (/)  ^o  x )  =  (/) )
5753, 54, 56syl2anc 661 . . . . . . . . . . 11  |-  ( Lim  x  ->  ( (/)  ^o  x
)  =  (/) )
58 0ss 3764 . . . . . . . . . . 11  |-  (/)  C_  ( B  ^o  x )
5957, 58syl6eqss 3504 . . . . . . . . . 10  |-  ( Lim  x  ->  ( (/)  ^o  x
)  C_  ( B  ^o  x ) )
60 oveq1 6197 . . . . . . . . . . 11  |-  ( A  =  (/)  ->  ( A  ^o  x )  =  ( (/)  ^o  x
) )
6160sseq1d 3481 . . . . . . . . . 10  |-  ( A  =  (/)  ->  ( ( A  ^o  x ) 
C_  ( B  ^o  x )  <->  ( (/)  ^o  x
)  C_  ( B  ^o  x ) ) )
6259, 61syl5ibr 221 . . . . . . . . 9  |-  ( A  =  (/)  ->  ( Lim  x  ->  ( A  ^o  x )  C_  ( B  ^o  x ) ) )
6362adantl 466 . . . . . . . 8  |-  ( ( ( B  e.  On  /\  A  e.  B )  /\  A  =  (/) )  ->  ( Lim  x  ->  ( A  ^o  x
)  C_  ( B  ^o  x ) ) )
6463a1dd 46 . . . . . . 7  |-  ( ( ( B  e.  On  /\  A  e.  B )  /\  A  =  (/) )  ->  ( Lim  x  ->  ( A. y  e.  x  ( A  ^o  y )  C_  ( B  ^o  y )  -> 
( A  ^o  x
)  C_  ( B  ^o  x ) ) ) )
65 ss2iun 4284 . . . . . . . . 9  |-  ( A. y  e.  x  ( A  ^o  y )  C_  ( B  ^o  y
)  ->  U_ y  e.  x  ( A  ^o  y )  C_  U_ y  e.  x  ( B  ^o  y ) )
66 oelim 7074 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  On  /\  ( x  e.  _V  /\ 
Lim  x ) )  /\  (/)  e.  A )  ->  ( A  ^o  x )  =  U_ y  e.  x  ( A  ^o  y ) )
6751, 66mpanlr1 686 . . . . . . . . . . . 12  |-  ( ( ( A  e.  On  /\ 
Lim  x )  /\  (/) 
e.  A )  -> 
( A  ^o  x
)  =  U_ y  e.  x  ( A  ^o  y ) )
6867an32s 802 . . . . . . . . . . 11  |-  ( ( ( A  e.  On  /\  (/)  e.  A )  /\  Lim  x )  ->  ( A  ^o  x )  = 
U_ y  e.  x  ( A  ^o  y
) )
6968adantllr 718 . . . . . . . . . 10  |-  ( ( ( ( A  e.  On  /\  ( B  e.  On  /\  A  e.  B ) )  /\  (/) 
e.  A )  /\  Lim  x )  ->  ( A  ^o  x )  = 
U_ y  e.  x  ( A  ^o  y
) )
7021anim1i 568 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  On  /\  A  e.  B )  /\  Lim  x )  ->  ( B  e.  On  /\  Lim  x
) )
71 ne0i 3741 . . . . . . . . . . . . . . . 16  |-  ( A  e.  B  ->  B  =/=  (/) )
72 on0eln0 4872 . . . . . . . . . . . . . . . 16  |-  ( B  e.  On  ->  ( (/) 
e.  B  <->  B  =/=  (/) ) )
7371, 72syl5ibr 221 . . . . . . . . . . . . . . 15  |-  ( B  e.  On  ->  ( A  e.  B  ->  (/)  e.  B ) )
7473imp 429 . . . . . . . . . . . . . 14  |-  ( ( B  e.  On  /\  A  e.  B )  -> 
(/)  e.  B )
7574adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  On  /\  A  e.  B )  /\  Lim  x )  ->  (/)  e.  B )
76 oelim 7074 . . . . . . . . . . . . . 14  |-  ( ( ( B  e.  On  /\  ( x  e.  _V  /\ 
Lim  x ) )  /\  (/)  e.  B )  ->  ( B  ^o  x )  =  U_ y  e.  x  ( B  ^o  y ) )
7751, 76mpanlr1 686 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  On  /\ 
Lim  x )  /\  (/) 
e.  B )  -> 
( B  ^o  x
)  =  U_ y  e.  x  ( B  ^o  y ) )
7870, 75, 77syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( B  e.  On  /\  A  e.  B )  /\  Lim  x )  ->  ( B  ^o  x )  =  U_ y  e.  x  ( B  ^o  y ) )
7978adantlr 714 . . . . . . . . . . 11  |-  ( ( ( ( B  e.  On  /\  A  e.  B )  /\  (/)  e.  A
)  /\  Lim  x )  ->  ( B  ^o  x )  =  U_ y  e.  x  ( B  ^o  y ) )
8079adantlll 717 . . . . . . . . . 10  |-  ( ( ( ( A  e.  On  /\  ( B  e.  On  /\  A  e.  B ) )  /\  (/) 
e.  A )  /\  Lim  x )  ->  ( B  ^o  x )  = 
U_ y  e.  x  ( B  ^o  y
) )
8169, 80sseq12d 3483 . . . . . . . . 9  |-  ( ( ( ( A  e.  On  /\  ( B  e.  On  /\  A  e.  B ) )  /\  (/) 
e.  A )  /\  Lim  x )  ->  (
( A  ^o  x
)  C_  ( B  ^o  x )  <->  U_ y  e.  x  ( A  ^o  y )  C_  U_ y  e.  x  ( B  ^o  y ) ) )
8265, 81syl5ibr 221 . . . . . . . 8  |-  ( ( ( ( A  e.  On  /\  ( B  e.  On  /\  A  e.  B ) )  /\  (/) 
e.  A )  /\  Lim  x )  ->  ( A. y  e.  x  ( A  ^o  y
)  C_  ( B  ^o  y )  ->  ( A  ^o  x )  C_  ( B  ^o  x
) ) )
8382ex 434 . . . . . . 7  |-  ( ( ( A  e.  On  /\  ( B  e.  On  /\  A  e.  B ) )  /\  (/)  e.  A
)  ->  ( Lim  x  ->  ( A. y  e.  x  ( A  ^o  y )  C_  ( B  ^o  y )  -> 
( A  ^o  x
)  C_  ( B  ^o  x ) ) ) )
8464, 83oe0lem 7053 . . . . . 6  |-  ( ( A  e.  On  /\  ( B  e.  On  /\  A  e.  B ) )  ->  ( Lim  x  ->  ( A. y  e.  x  ( A  ^o  y )  C_  ( B  ^o  y )  -> 
( A  ^o  x
)  C_  ( B  ^o  x ) ) ) )
8584com12 31 . . . . 5  |-  ( Lim  x  ->  ( ( A  e.  On  /\  ( B  e.  On  /\  A  e.  B ) )  -> 
( A. y  e.  x  ( A  ^o  y )  C_  ( B  ^o  y )  -> 
( A  ^o  x
)  C_  ( B  ^o  x ) ) ) )
8650, 85syl5 32 . . . 4  |-  ( Lim  x  ->  ( ( B  e.  On  /\  A  e.  B )  ->  ( A. y  e.  x  ( A  ^o  y
)  C_  ( B  ^o  y )  ->  ( A  ^o  x )  C_  ( B  ^o  x
) ) ) )
873, 6, 9, 12, 20, 49, 86tfinds3 6575 . . 3  |-  ( C  e.  On  ->  (
( B  e.  On  /\  A  e.  B )  ->  ( A  ^o  C )  C_  ( B  ^o  C ) ) )
8887expd 436 . 2  |-  ( C  e.  On  ->  ( B  e.  On  ->  ( A  e.  B  -> 
( A  ^o  C
)  C_  ( B  ^o  C ) ) ) )
8988impcom 430 1  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  ->  ( A  ^o  C
)  C_  ( B  ^o  C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2644   A.wral 2795   _Vcvv 3068    C_ wss 3426   (/)c0 3735   U_ciun 4269   Oncon0 4817   Lim wlim 4818   suc csuc 4819  (class class class)co 6190   1oc1o 7013    .o comu 7018    ^o coe 7019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4501  ax-sep 4511  ax-nul 4519  ax-pow 4568  ax-pr 4629  ax-un 6472
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-reu 2802  df-rab 2804  df-v 3070  df-sbc 3285  df-csb 3387  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-pss 3442  df-nul 3736  df-if 3890  df-pw 3960  df-sn 3976  df-pr 3978  df-tp 3980  df-op 3982  df-uni 4190  df-iun 4271  df-br 4391  df-opab 4449  df-mpt 4450  df-tr 4484  df-eprel 4730  df-id 4734  df-po 4739  df-so 4740  df-fr 4777  df-we 4779  df-ord 4820  df-on 4821  df-lim 4822  df-suc 4823  df-xp 4944  df-rel 4945  df-cnv 4946  df-co 4947  df-dm 4948  df-rn 4949  df-res 4950  df-ima 4951  df-iota 5479  df-fun 5518  df-fn 5519  df-f 5520  df-f1 5521  df-fo 5522  df-f1o 5523  df-fv 5524  df-ov 6193  df-oprab 6194  df-mpt2 6195  df-om 6577  df-1st 6677  df-2nd 6678  df-recs 6932  df-rdg 6966  df-1o 7020  df-oadd 7024  df-omul 7025  df-oexp 7026
This theorem is referenced by:  oeordsuc  7133
  Copyright terms: Public domain W3C validator