MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeworde Structured version   Unicode version

Theorem oeworde 7279
Description: Ordinal exponentiation compared to its exponent. Proposition 8.37 of [TakeutiZaring] p. 68. (Contributed by NM, 7-Jan-2005.) (Revised by Mario Carneiro, 24-May-2015.)
Assertion
Ref Expression
oeworde  |-  ( ( A  e.  ( On 
\  2o )  /\  B  e.  On )  ->  B  C_  ( A  ^o  B ) )

Proof of Theorem oeworde
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . 4  |-  ( x  =  (/)  ->  x  =  (/) )
2 oveq2 6286 . . . 4  |-  ( x  =  (/)  ->  ( A  ^o  x )  =  ( A  ^o  (/) ) )
31, 2sseq12d 3471 . . 3  |-  ( x  =  (/)  ->  ( x 
C_  ( A  ^o  x )  <->  (/)  C_  ( A  ^o  (/) ) ) )
4 id 22 . . . 4  |-  ( x  =  y  ->  x  =  y )
5 oveq2 6286 . . . 4  |-  ( x  =  y  ->  ( A  ^o  x )  =  ( A  ^o  y
) )
64, 5sseq12d 3471 . . 3  |-  ( x  =  y  ->  (
x  C_  ( A  ^o  x )  <->  y  C_  ( A  ^o  y
) ) )
7 id 22 . . . 4  |-  ( x  =  suc  y  ->  x  =  suc  y )
8 oveq2 6286 . . . 4  |-  ( x  =  suc  y  -> 
( A  ^o  x
)  =  ( A  ^o  suc  y ) )
97, 8sseq12d 3471 . . 3  |-  ( x  =  suc  y  -> 
( x  C_  ( A  ^o  x )  <->  suc  y  C_  ( A  ^o  suc  y
) ) )
10 id 22 . . . 4  |-  ( x  =  B  ->  x  =  B )
11 oveq2 6286 . . . 4  |-  ( x  =  B  ->  ( A  ^o  x )  =  ( A  ^o  B
) )
1210, 11sseq12d 3471 . . 3  |-  ( x  =  B  ->  (
x  C_  ( A  ^o  x )  <->  B  C_  ( A  ^o  B ) ) )
13 0ss 3768 . . . 4  |-  (/)  C_  ( A  ^o  (/) )
1413a1i 11 . . 3  |-  ( A  e.  ( On  \  2o )  ->  (/)  C_  ( A  ^o  (/) ) )
15 eloni 5420 . . . . . . 7  |-  ( y  e.  On  ->  Ord  y )
1615adantl 464 . . . . . 6  |-  ( ( A  e.  ( On 
\  2o )  /\  y  e.  On )  ->  Ord  y )
17 eldifi 3565 . . . . . . . 8  |-  ( A  e.  ( On  \  2o )  ->  A  e.  On )
18 oecl 7224 . . . . . . . 8  |-  ( ( A  e.  On  /\  y  e.  On )  ->  ( A  ^o  y
)  e.  On )
1917, 18sylan 469 . . . . . . 7  |-  ( ( A  e.  ( On 
\  2o )  /\  y  e.  On )  ->  ( A  ^o  y
)  e.  On )
20 eloni 5420 . . . . . . 7  |-  ( ( A  ^o  y )  e.  On  ->  Ord  ( A  ^o  y
) )
2119, 20syl 17 . . . . . 6  |-  ( ( A  e.  ( On 
\  2o )  /\  y  e.  On )  ->  Ord  ( A  ^o  y ) )
22 ordsucsssuc 6641 . . . . . 6  |-  ( ( Ord  y  /\  Ord  ( A  ^o  y
) )  ->  (
y  C_  ( A  ^o  y )  <->  suc  y  C_  suc  ( A  ^o  y
) ) )
2316, 21, 22syl2anc 659 . . . . 5  |-  ( ( A  e.  ( On 
\  2o )  /\  y  e.  On )  ->  ( y  C_  ( A  ^o  y )  <->  suc  y  C_  suc  ( A  ^o  y
) ) )
24 suceloni 6631 . . . . . . . . 9  |-  ( y  e.  On  ->  suc  y  e.  On )
25 oecl 7224 . . . . . . . . 9  |-  ( ( A  e.  On  /\  suc  y  e.  On )  ->  ( A  ^o  suc  y )  e.  On )
2617, 24, 25syl2an 475 . . . . . . . 8  |-  ( ( A  e.  ( On 
\  2o )  /\  y  e.  On )  ->  ( A  ^o  suc  y )  e.  On )
27 eloni 5420 . . . . . . . 8  |-  ( ( A  ^o  suc  y
)  e.  On  ->  Ord  ( A  ^o  suc  y ) )
2826, 27syl 17 . . . . . . 7  |-  ( ( A  e.  ( On 
\  2o )  /\  y  e.  On )  ->  Ord  ( A  ^o  suc  y ) )
29 id 22 . . . . . . . 8  |-  ( A  e.  ( On  \  2o )  ->  A  e.  ( On  \  2o ) )
30 vex 3062 . . . . . . . . . 10  |-  y  e. 
_V
3130sucid 5489 . . . . . . . . 9  |-  y  e. 
suc  y
32 oeordi 7273 . . . . . . . . 9  |-  ( ( suc  y  e.  On  /\  A  e.  ( On 
\  2o ) )  ->  ( y  e. 
suc  y  ->  ( A  ^o  y )  e.  ( A  ^o  suc  y ) ) )
3331, 32mpi 20 . . . . . . . 8  |-  ( ( suc  y  e.  On  /\  A  e.  ( On 
\  2o ) )  ->  ( A  ^o  y )  e.  ( A  ^o  suc  y
) )
3424, 29, 33syl2anr 476 . . . . . . 7  |-  ( ( A  e.  ( On 
\  2o )  /\  y  e.  On )  ->  ( A  ^o  y
)  e.  ( A  ^o  suc  y ) )
35 ordsucss 6636 . . . . . . 7  |-  ( Ord  ( A  ^o  suc  y )  ->  (
( A  ^o  y
)  e.  ( A  ^o  suc  y )  ->  suc  ( A  ^o  y )  C_  ( A  ^o  suc  y ) ) )
3628, 34, 35sylc 59 . . . . . 6  |-  ( ( A  e.  ( On 
\  2o )  /\  y  e.  On )  ->  suc  ( A  ^o  y )  C_  ( A  ^o  suc  y ) )
37 sstr2 3449 . . . . . 6  |-  ( suc  y  C_  suc  ( A  ^o  y )  -> 
( suc  ( A  ^o  y )  C_  ( A  ^o  suc  y )  ->  suc  y  C_  ( A  ^o  suc  y
) ) )
3836, 37syl5com 28 . . . . 5  |-  ( ( A  e.  ( On 
\  2o )  /\  y  e.  On )  ->  ( suc  y  C_  suc  ( A  ^o  y
)  ->  suc  y  C_  ( A  ^o  suc  y
) ) )
3923, 38sylbid 215 . . . 4  |-  ( ( A  e.  ( On 
\  2o )  /\  y  e.  On )  ->  ( y  C_  ( A  ^o  y )  ->  suc  y  C_  ( A  ^o  suc  y ) ) )
4039expcom 433 . . 3  |-  ( y  e.  On  ->  ( A  e.  ( On  \  2o )  ->  (
y  C_  ( A  ^o  y )  ->  suc  y  C_  ( A  ^o  suc  y ) ) ) )
41 dif20el 7192 . . . . 5  |-  ( A  e.  ( On  \  2o )  ->  (/)  e.  A
)
4217, 41jca 530 . . . 4  |-  ( A  e.  ( On  \  2o )  ->  ( A  e.  On  /\  (/)  e.  A
) )
43 ss2iun 4287 . . . . . 6  |-  ( A. y  e.  x  y  C_  ( A  ^o  y
)  ->  U_ y  e.  x  y  C_  U_ y  e.  x  ( A  ^o  y ) )
44 limuni 5470 . . . . . . . . 9  |-  ( Lim  x  ->  x  =  U. x )
45 uniiun 4324 . . . . . . . . 9  |-  U. x  =  U_ y  e.  x  y
4644, 45syl6eq 2459 . . . . . . . 8  |-  ( Lim  x  ->  x  =  U_ y  e.  x  y )
4746adantr 463 . . . . . . 7  |-  ( ( Lim  x  /\  ( A  e.  On  /\  (/)  e.  A
) )  ->  x  =  U_ y  e.  x  y )
48 vex 3062 . . . . . . . . . 10  |-  x  e. 
_V
49 oelim 7221 . . . . . . . . . 10  |-  ( ( ( A  e.  On  /\  ( x  e.  _V  /\ 
Lim  x ) )  /\  (/)  e.  A )  ->  ( A  ^o  x )  =  U_ y  e.  x  ( A  ^o  y ) )
5048, 49mpanlr1 684 . . . . . . . . 9  |-  ( ( ( A  e.  On  /\ 
Lim  x )  /\  (/) 
e.  A )  -> 
( A  ^o  x
)  =  U_ y  e.  x  ( A  ^o  y ) )
5150anasss 645 . . . . . . . 8  |-  ( ( A  e.  On  /\  ( Lim  x  /\  (/)  e.  A
) )  ->  ( A  ^o  x )  = 
U_ y  e.  x  ( A  ^o  y
) )
5251an12s 802 . . . . . . 7  |-  ( ( Lim  x  /\  ( A  e.  On  /\  (/)  e.  A
) )  ->  ( A  ^o  x )  = 
U_ y  e.  x  ( A  ^o  y
) )
5347, 52sseq12d 3471 . . . . . 6  |-  ( ( Lim  x  /\  ( A  e.  On  /\  (/)  e.  A
) )  ->  (
x  C_  ( A  ^o  x )  <->  U_ y  e.  x  y  C_  U_ y  e.  x  ( A  ^o  y ) ) )
5443, 53syl5ibr 221 . . . . 5  |-  ( ( Lim  x  /\  ( A  e.  On  /\  (/)  e.  A
) )  ->  ( A. y  e.  x  y  C_  ( A  ^o  y )  ->  x  C_  ( A  ^o  x
) ) )
5554ex 432 . . . 4  |-  ( Lim  x  ->  ( ( A  e.  On  /\  (/)  e.  A
)  ->  ( A. y  e.  x  y  C_  ( A  ^o  y
)  ->  x  C_  ( A  ^o  x ) ) ) )
5642, 55syl5 30 . . 3  |-  ( Lim  x  ->  ( A  e.  ( On  \  2o )  ->  ( A. y  e.  x  y  C_  ( A  ^o  y
)  ->  x  C_  ( A  ^o  x ) ) ) )
573, 6, 9, 12, 14, 40, 56tfinds3 6682 . 2  |-  ( B  e.  On  ->  ( A  e.  ( On  \  2o )  ->  B  C_  ( A  ^o  B
) ) )
5857impcom 428 1  |-  ( ( A  e.  ( On 
\  2o )  /\  B  e.  On )  ->  B  C_  ( A  ^o  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1405    e. wcel 1842   A.wral 2754   _Vcvv 3059    \ cdif 3411    C_ wss 3414   (/)c0 3738   U.cuni 4191   U_ciun 4271   Ord word 5409   Oncon0 5410   Lim wlim 5411   suc csuc 5412  (class class class)co 6278   2oc2o 7161    ^o coe 7166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2759  df-rex 2760  df-reu 2761  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-om 6684  df-wrecs 7013  df-recs 7075  df-rdg 7113  df-1o 7167  df-2o 7168  df-oadd 7171  df-omul 7172  df-oexp 7173
This theorem is referenced by:  oeeulem  7287  cnfcom3clem  8181  cnfcom3clemOLD  8189
  Copyright terms: Public domain W3C validator