MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oesuclem Structured version   Unicode version

Theorem oesuclem 6953
Description: Lemma for oesuc 6955. (Contributed by NM, 31-Dec-2004.) (Revised by Mario Carneiro, 15-Nov-2014.)
Hypotheses
Ref Expression
oesuclem.1  |-  Lim  X
oesuclem.2  |-  ( B  e.  X  ->  ( rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) `  suc  B )  =  ( ( x  e.  _V  |->  ( x  .o  A ) ) `  ( rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) `  B
) ) )
Assertion
Ref Expression
oesuclem  |-  ( ( A  e.  On  /\  B  e.  X )  ->  ( A  ^o  suc  B )  =  ( ( A  ^o  B )  .o  A ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    X( x)

Proof of Theorem oesuclem
StepHypRef Expression
1 oveq1 6087 . . . 4  |-  ( A  =  (/)  ->  ( A  ^o  suc  B )  =  ( (/)  ^o  suc  B ) )
2 oesuclem.1 . . . . . . . 8  |-  Lim  X
3 limord 4765 . . . . . . . 8  |-  ( Lim 
X  ->  Ord  X )
42, 3ax-mp 5 . . . . . . 7  |-  Ord  X
5 ordelord 4728 . . . . . . 7  |-  ( ( Ord  X  /\  B  e.  X )  ->  Ord  B )
64, 5mpan 663 . . . . . 6  |-  ( B  e.  X  ->  Ord  B )
7 0elsuc 6435 . . . . . 6  |-  ( Ord 
B  ->  (/)  e.  suc  B )
86, 7syl 16 . . . . 5  |-  ( B  e.  X  ->  (/)  e.  suc  B )
9 limsuc 6449 . . . . . . 7  |-  ( Lim 
X  ->  ( B  e.  X  <->  suc  B  e.  X
) )
102, 9ax-mp 5 . . . . . 6  |-  ( B  e.  X  <->  suc  B  e.  X )
11 ordelon 4730 . . . . . . . 8  |-  ( ( Ord  X  /\  suc  B  e.  X )  ->  suc  B  e.  On )
124, 11mpan 663 . . . . . . 7  |-  ( suc 
B  e.  X  ->  suc  B  e.  On )
13 oe0m1 6949 . . . . . . 7  |-  ( suc 
B  e.  On  ->  (
(/)  e.  suc  B  <->  ( (/)  ^o  suc  B )  =  (/) ) )
1412, 13syl 16 . . . . . 6  |-  ( suc 
B  e.  X  -> 
( (/)  e.  suc  B  <->  (
(/)  ^o  suc  B )  =  (/) ) )
1510, 14sylbi 195 . . . . 5  |-  ( B  e.  X  ->  ( (/) 
e.  suc  B  <->  ( (/)  ^o  suc  B )  =  (/) ) )
168, 15mpbid 210 . . . 4  |-  ( B  e.  X  ->  ( (/) 
^o  suc  B )  =  (/) )
171, 16sylan9eqr 2487 . . 3  |-  ( ( B  e.  X  /\  A  =  (/) )  -> 
( A  ^o  suc  B )  =  (/) )
18 oveq1 6087 . . . . 5  |-  ( A  =  (/)  ->  ( A  ^o  B )  =  ( (/)  ^o  B ) )
19 id 22 . . . . 5  |-  ( A  =  (/)  ->  A  =  (/) )
2018, 19oveq12d 6098 . . . 4  |-  ( A  =  (/)  ->  ( ( A  ^o  B )  .o  A )  =  ( ( (/)  ^o  B
)  .o  (/) ) )
21 ordelon 4730 . . . . . . 7  |-  ( ( Ord  X  /\  B  e.  X )  ->  B  e.  On )
224, 21mpan 663 . . . . . 6  |-  ( B  e.  X  ->  B  e.  On )
23 oveq2 6088 . . . . . . . . 9  |-  ( B  =  (/)  ->  ( (/)  ^o  B )  =  (
(/)  ^o  (/) ) )
24 oe0m0 6948 . . . . . . . . . 10  |-  ( (/)  ^o  (/) )  =  1o
25 1on 6915 . . . . . . . . . 10  |-  1o  e.  On
2624, 25eqeltri 2503 . . . . . . . . 9  |-  ( (/)  ^o  (/) )  e.  On
2723, 26syl6eqel 2521 . . . . . . . 8  |-  ( B  =  (/)  ->  ( (/)  ^o  B )  e.  On )
2827adantl 463 . . . . . . 7  |-  ( ( B  e.  X  /\  B  =  (/) )  -> 
( (/)  ^o  B )  e.  On )
29 oe0m1 6949 . . . . . . . . . . 11  |-  ( B  e.  On  ->  ( (/) 
e.  B  <->  ( (/)  ^o  B
)  =  (/) ) )
3022, 29syl 16 . . . . . . . . . 10  |-  ( B  e.  X  ->  ( (/) 
e.  B  <->  ( (/)  ^o  B
)  =  (/) ) )
3130biimpa 481 . . . . . . . . 9  |-  ( ( B  e.  X  /\  (/) 
e.  B )  -> 
( (/)  ^o  B )  =  (/) )
32 0elon 4759 . . . . . . . . 9  |-  (/)  e.  On
3331, 32syl6eqel 2521 . . . . . . . 8  |-  ( ( B  e.  X  /\  (/) 
e.  B )  -> 
( (/)  ^o  B )  e.  On )
3433adantll 706 . . . . . . 7  |-  ( ( ( B  e.  On  /\  B  e.  X )  /\  (/)  e.  B )  ->  ( (/)  ^o  B
)  e.  On )
3528, 34oe0lem 6941 . . . . . 6  |-  ( ( B  e.  On  /\  B  e.  X )  ->  ( (/)  ^o  B )  e.  On )
3622, 35mpancom 662 . . . . 5  |-  ( B  e.  X  ->  ( (/) 
^o  B )  e.  On )
37 om0 6945 . . . . 5  |-  ( (
(/)  ^o  B )  e.  On  ->  ( ( (/) 
^o  B )  .o  (/) )  =  (/) )
3836, 37syl 16 . . . 4  |-  ( B  e.  X  ->  (
( (/)  ^o  B )  .o  (/) )  =  (/) )
3920, 38sylan9eqr 2487 . . 3  |-  ( ( B  e.  X  /\  A  =  (/) )  -> 
( ( A  ^o  B )  .o  A
)  =  (/) )
4017, 39eqtr4d 2468 . 2  |-  ( ( B  e.  X  /\  A  =  (/) )  -> 
( A  ^o  suc  B )  =  ( ( A  ^o  B )  .o  A ) )
41 oesuclem.2 . . . 4  |-  ( B  e.  X  ->  ( rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) `  suc  B )  =  ( ( x  e.  _V  |->  ( x  .o  A ) ) `  ( rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) `  B
) ) )
4241ad2antlr 719 . . 3  |-  ( ( ( A  e.  On  /\  B  e.  X )  /\  (/)  e.  A )  ->  ( rec (
( x  e.  _V  |->  ( x  .o  A
) ) ,  1o ) `  suc  B )  =  ( ( x  e.  _V  |->  ( x  .o  A ) ) `
 ( rec (
( x  e.  _V  |->  ( x  .o  A
) ) ,  1o ) `  B )
) )
4310, 12sylbi 195 . . . 4  |-  ( B  e.  X  ->  suc  B  e.  On )
44 oevn0 6943 . . . 4  |-  ( ( ( A  e.  On  /\ 
suc  B  e.  On )  /\  (/)  e.  A )  ->  ( A  ^o  suc  B )  =  ( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) `  suc  B ) )
4543, 44sylanl2 644 . . 3  |-  ( ( ( A  e.  On  /\  B  e.  X )  /\  (/)  e.  A )  ->  ( A  ^o  suc  B )  =  ( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) `  suc  B ) )
46 ovex 6105 . . . . 5  |-  ( A  ^o  B )  e. 
_V
47 oveq1 6087 . . . . . 6  |-  ( x  =  ( A  ^o  B )  ->  (
x  .o  A )  =  ( ( A  ^o  B )  .o  A ) )
48 eqid 2433 . . . . . 6  |-  ( x  e.  _V  |->  ( x  .o  A ) )  =  ( x  e. 
_V  |->  ( x  .o  A ) )
49 ovex 6105 . . . . . 6  |-  ( ( A  ^o  B )  .o  A )  e. 
_V
5047, 48, 49fvmpt 5762 . . . . 5  |-  ( ( A  ^o  B )  e.  _V  ->  (
( x  e.  _V  |->  ( x  .o  A
) ) `  ( A  ^o  B ) )  =  ( ( A  ^o  B )  .o  A ) )
5146, 50ax-mp 5 . . . 4  |-  ( ( x  e.  _V  |->  ( x  .o  A ) ) `  ( A  ^o  B ) )  =  ( ( A  ^o  B )  .o  A )
52 oevn0 6943 . . . . . 6  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  (/)  e.  A )  ->  ( A  ^o  B )  =  ( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) `  B ) )
5322, 52sylanl2 644 . . . . 5  |-  ( ( ( A  e.  On  /\  B  e.  X )  /\  (/)  e.  A )  ->  ( A  ^o  B )  =  ( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) `  B ) )
5453fveq2d 5683 . . . 4  |-  ( ( ( A  e.  On  /\  B  e.  X )  /\  (/)  e.  A )  ->  ( ( x  e.  _V  |->  ( x  .o  A ) ) `
 ( A  ^o  B ) )  =  ( ( x  e. 
_V  |->  ( x  .o  A ) ) `  ( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) `  B ) ) )
5551, 54syl5eqr 2479 . . 3  |-  ( ( ( A  e.  On  /\  B  e.  X )  /\  (/)  e.  A )  ->  ( ( A  ^o  B )  .o  A )  =  ( ( x  e.  _V  |->  ( x  .o  A
) ) `  ( rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) `  B
) ) )
5642, 45, 553eqtr4d 2475 . 2  |-  ( ( ( A  e.  On  /\  B  e.  X )  /\  (/)  e.  A )  ->  ( A  ^o  suc  B )  =  ( ( A  ^o  B
)  .o  A ) )
5740, 56oe0lem 6941 1  |-  ( ( A  e.  On  /\  B  e.  X )  ->  ( A  ^o  suc  B )  =  ( ( A  ^o  B )  .o  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1362    e. wcel 1755   _Vcvv 2962   (/)c0 3625    e. cmpt 4338   Ord word 4705   Oncon0 4706   Lim wlim 4707   suc csuc 4708   ` cfv 5406  (class class class)co 6080   reccrdg 6851   1oc1o 6901    .o comu 6906    ^o coe 6907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-om 6466  df-recs 6818  df-rdg 6852  df-1o 6908  df-omul 6913  df-oexp 6914
This theorem is referenced by:  oesuc  6955  onesuc  6958
  Copyright terms: Public domain W3C validator