MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oesuclem Unicode version

Theorem oesuclem 6728
Description: Lemma for oesuc 6730. (Contributed by NM, 31-Dec-2004.) (Revised by Mario Carneiro, 15-Nov-2014.)
Hypotheses
Ref Expression
oesuclem.1  |-  Lim  X
oesuclem.2  |-  ( B  e.  X  ->  ( rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) `  suc  B )  =  ( ( x  e.  _V  |->  ( x  .o  A ) ) `  ( rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) `  B
) ) )
Assertion
Ref Expression
oesuclem  |-  ( ( A  e.  On  /\  B  e.  X )  ->  ( A  ^o  suc  B )  =  ( ( A  ^o  B )  .o  A ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    X( x)

Proof of Theorem oesuclem
StepHypRef Expression
1 oveq1 6047 . . . 4  |-  ( A  =  (/)  ->  ( A  ^o  suc  B )  =  ( (/)  ^o  suc  B ) )
2 oesuclem.1 . . . . . . . 8  |-  Lim  X
3 limord 4600 . . . . . . . 8  |-  ( Lim 
X  ->  Ord  X )
42, 3ax-mp 8 . . . . . . 7  |-  Ord  X
5 ordelord 4563 . . . . . . 7  |-  ( ( Ord  X  /\  B  e.  X )  ->  Ord  B )
64, 5mpan 652 . . . . . 6  |-  ( B  e.  X  ->  Ord  B )
7 0elsuc 4774 . . . . . 6  |-  ( Ord 
B  ->  (/)  e.  suc  B )
86, 7syl 16 . . . . 5  |-  ( B  e.  X  ->  (/)  e.  suc  B )
9 limsuc 4788 . . . . . . 7  |-  ( Lim 
X  ->  ( B  e.  X  <->  suc  B  e.  X
) )
102, 9ax-mp 8 . . . . . 6  |-  ( B  e.  X  <->  suc  B  e.  X )
11 ordelon 4565 . . . . . . . 8  |-  ( ( Ord  X  /\  suc  B  e.  X )  ->  suc  B  e.  On )
124, 11mpan 652 . . . . . . 7  |-  ( suc 
B  e.  X  ->  suc  B  e.  On )
13 oe0m1 6724 . . . . . . 7  |-  ( suc 
B  e.  On  ->  (
(/)  e.  suc  B  <->  ( (/)  ^o  suc  B )  =  (/) ) )
1412, 13syl 16 . . . . . 6  |-  ( suc 
B  e.  X  -> 
( (/)  e.  suc  B  <->  (
(/)  ^o  suc  B )  =  (/) ) )
1510, 14sylbi 188 . . . . 5  |-  ( B  e.  X  ->  ( (/) 
e.  suc  B  <->  ( (/)  ^o  suc  B )  =  (/) ) )
168, 15mpbid 202 . . . 4  |-  ( B  e.  X  ->  ( (/) 
^o  suc  B )  =  (/) )
171, 16sylan9eqr 2458 . . 3  |-  ( ( B  e.  X  /\  A  =  (/) )  -> 
( A  ^o  suc  B )  =  (/) )
18 oveq1 6047 . . . . 5  |-  ( A  =  (/)  ->  ( A  ^o  B )  =  ( (/)  ^o  B ) )
19 id 20 . . . . 5  |-  ( A  =  (/)  ->  A  =  (/) )
2018, 19oveq12d 6058 . . . 4  |-  ( A  =  (/)  ->  ( ( A  ^o  B )  .o  A )  =  ( ( (/)  ^o  B
)  .o  (/) ) )
21 ordelon 4565 . . . . . . 7  |-  ( ( Ord  X  /\  B  e.  X )  ->  B  e.  On )
224, 21mpan 652 . . . . . 6  |-  ( B  e.  X  ->  B  e.  On )
23 oveq2 6048 . . . . . . . . 9  |-  ( B  =  (/)  ->  ( (/)  ^o  B )  =  (
(/)  ^o  (/) ) )
24 oe0m0 6723 . . . . . . . . . 10  |-  ( (/)  ^o  (/) )  =  1o
25 1on 6690 . . . . . . . . . 10  |-  1o  e.  On
2624, 25eqeltri 2474 . . . . . . . . 9  |-  ( (/)  ^o  (/) )  e.  On
2723, 26syl6eqel 2492 . . . . . . . 8  |-  ( B  =  (/)  ->  ( (/)  ^o  B )  e.  On )
2827adantl 453 . . . . . . 7  |-  ( ( B  e.  X  /\  B  =  (/) )  -> 
( (/)  ^o  B )  e.  On )
29 oe0m1 6724 . . . . . . . . . . 11  |-  ( B  e.  On  ->  ( (/) 
e.  B  <->  ( (/)  ^o  B
)  =  (/) ) )
3022, 29syl 16 . . . . . . . . . 10  |-  ( B  e.  X  ->  ( (/) 
e.  B  <->  ( (/)  ^o  B
)  =  (/) ) )
3130biimpa 471 . . . . . . . . 9  |-  ( ( B  e.  X  /\  (/) 
e.  B )  -> 
( (/)  ^o  B )  =  (/) )
32 0elon 4594 . . . . . . . . 9  |-  (/)  e.  On
3331, 32syl6eqel 2492 . . . . . . . 8  |-  ( ( B  e.  X  /\  (/) 
e.  B )  -> 
( (/)  ^o  B )  e.  On )
3433adantll 695 . . . . . . 7  |-  ( ( ( B  e.  On  /\  B  e.  X )  /\  (/)  e.  B )  ->  ( (/)  ^o  B
)  e.  On )
3528, 34oe0lem 6716 . . . . . 6  |-  ( ( B  e.  On  /\  B  e.  X )  ->  ( (/)  ^o  B )  e.  On )
3622, 35mpancom 651 . . . . 5  |-  ( B  e.  X  ->  ( (/) 
^o  B )  e.  On )
37 om0 6720 . . . . 5  |-  ( (
(/)  ^o  B )  e.  On  ->  ( ( (/) 
^o  B )  .o  (/) )  =  (/) )
3836, 37syl 16 . . . 4  |-  ( B  e.  X  ->  (
( (/)  ^o  B )  .o  (/) )  =  (/) )
3920, 38sylan9eqr 2458 . . 3  |-  ( ( B  e.  X  /\  A  =  (/) )  -> 
( ( A  ^o  B )  .o  A
)  =  (/) )
4017, 39eqtr4d 2439 . 2  |-  ( ( B  e.  X  /\  A  =  (/) )  -> 
( A  ^o  suc  B )  =  ( ( A  ^o  B )  .o  A ) )
41 oesuclem.2 . . . 4  |-  ( B  e.  X  ->  ( rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) `  suc  B )  =  ( ( x  e.  _V  |->  ( x  .o  A ) ) `  ( rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) `  B
) ) )
4241ad2antlr 708 . . 3  |-  ( ( ( A  e.  On  /\  B  e.  X )  /\  (/)  e.  A )  ->  ( rec (
( x  e.  _V  |->  ( x  .o  A
) ) ,  1o ) `  suc  B )  =  ( ( x  e.  _V  |->  ( x  .o  A ) ) `
 ( rec (
( x  e.  _V  |->  ( x  .o  A
) ) ,  1o ) `  B )
) )
4310, 12sylbi 188 . . . 4  |-  ( B  e.  X  ->  suc  B  e.  On )
44 oevn0 6718 . . . 4  |-  ( ( ( A  e.  On  /\ 
suc  B  e.  On )  /\  (/)  e.  A )  ->  ( A  ^o  suc  B )  =  ( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) `  suc  B ) )
4543, 44sylanl2 633 . . 3  |-  ( ( ( A  e.  On  /\  B  e.  X )  /\  (/)  e.  A )  ->  ( A  ^o  suc  B )  =  ( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) `  suc  B ) )
46 ovex 6065 . . . . 5  |-  ( A  ^o  B )  e. 
_V
47 oveq1 6047 . . . . . 6  |-  ( x  =  ( A  ^o  B )  ->  (
x  .o  A )  =  ( ( A  ^o  B )  .o  A ) )
48 eqid 2404 . . . . . 6  |-  ( x  e.  _V  |->  ( x  .o  A ) )  =  ( x  e. 
_V  |->  ( x  .o  A ) )
49 ovex 6065 . . . . . 6  |-  ( ( A  ^o  B )  .o  A )  e. 
_V
5047, 48, 49fvmpt 5765 . . . . 5  |-  ( ( A  ^o  B )  e.  _V  ->  (
( x  e.  _V  |->  ( x  .o  A
) ) `  ( A  ^o  B ) )  =  ( ( A  ^o  B )  .o  A ) )
5146, 50ax-mp 8 . . . 4  |-  ( ( x  e.  _V  |->  ( x  .o  A ) ) `  ( A  ^o  B ) )  =  ( ( A  ^o  B )  .o  A )
52 oevn0 6718 . . . . . 6  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  (/)  e.  A )  ->  ( A  ^o  B )  =  ( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) `  B ) )
5322, 52sylanl2 633 . . . . 5  |-  ( ( ( A  e.  On  /\  B  e.  X )  /\  (/)  e.  A )  ->  ( A  ^o  B )  =  ( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) `  B ) )
5453fveq2d 5691 . . . 4  |-  ( ( ( A  e.  On  /\  B  e.  X )  /\  (/)  e.  A )  ->  ( ( x  e.  _V  |->  ( x  .o  A ) ) `
 ( A  ^o  B ) )  =  ( ( x  e. 
_V  |->  ( x  .o  A ) ) `  ( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) `  B ) ) )
5551, 54syl5eqr 2450 . . 3  |-  ( ( ( A  e.  On  /\  B  e.  X )  /\  (/)  e.  A )  ->  ( ( A  ^o  B )  .o  A )  =  ( ( x  e.  _V  |->  ( x  .o  A
) ) `  ( rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) `  B
) ) )
5642, 45, 553eqtr4d 2446 . 2  |-  ( ( ( A  e.  On  /\  B  e.  X )  /\  (/)  e.  A )  ->  ( A  ^o  suc  B )  =  ( ( A  ^o  B
)  .o  A ) )
5740, 56oe0lem 6716 1  |-  ( ( A  e.  On  /\  B  e.  X )  ->  ( A  ^o  suc  B )  =  ( ( A  ^o  B )  .o  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   _Vcvv 2916   (/)c0 3588    e. cmpt 4226   Ord word 4540   Oncon0 4541   Lim wlim 4542   suc csuc 4543   ` cfv 5413  (class class class)co 6040   reccrdg 6626   1oc1o 6676    .o comu 6681    ^o coe 6682
This theorem is referenced by:  oesuc  6730  onesuc  6733
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-recs 6592  df-rdg 6627  df-1o 6683  df-omul 6688  df-oexp 6689
  Copyright terms: Public domain W3C validator