MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeordsuc Structured version   Visualization version   Unicode version

Theorem oeordsuc 7313
Description: Ordering property of ordinal exponentiation with a successor exponent. Corollary 8.36 of [TakeutiZaring] p. 68. (Contributed by NM, 7-Jan-2005.)
Assertion
Ref Expression
oeordsuc  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  ->  ( A  ^o  suc  C )  e.  ( B  ^o  suc  C ) ) )

Proof of Theorem oeordsuc
StepHypRef Expression
1 onelon 5455 . . . 4  |-  ( ( B  e.  On  /\  A  e.  B )  ->  A  e.  On )
21ex 441 . . 3  |-  ( B  e.  On  ->  ( A  e.  B  ->  A  e.  On ) )
32adantr 472 . 2  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  ->  A  e.  On ) )
4 oewordri 7311 . . . . . . . . . . 11  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  ->  ( A  ^o  C
)  C_  ( B  ^o  C ) ) )
543adant1 1048 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  ->  ( A  ^o  C ) 
C_  ( B  ^o  C ) ) )
6 oecl 7257 . . . . . . . . . . . 12  |-  ( ( A  e.  On  /\  C  e.  On )  ->  ( A  ^o  C
)  e.  On )
763adant2 1049 . . . . . . . . . . 11  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( A  ^o  C )  e.  On )
8 oecl 7257 . . . . . . . . . . . 12  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( B  ^o  C
)  e.  On )
983adant1 1048 . . . . . . . . . . 11  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( B  ^o  C )  e.  On )
10 simp1 1030 . . . . . . . . . . 11  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  A  e.  On )
11 omwordri 7291 . . . . . . . . . . 11  |-  ( ( ( A  ^o  C
)  e.  On  /\  ( B  ^o  C )  e.  On  /\  A  e.  On )  ->  (
( A  ^o  C
)  C_  ( B  ^o  C )  ->  (
( A  ^o  C
)  .o  A ) 
C_  ( ( B  ^o  C )  .o  A ) ) )
127, 9, 10, 11syl3anc 1292 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  (
( A  ^o  C
)  C_  ( B  ^o  C )  ->  (
( A  ^o  C
)  .o  A ) 
C_  ( ( B  ^o  C )  .o  A ) ) )
135, 12syld 44 . . . . . . . . 9  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  ->  ( ( A  ^o  C
)  .o  A ) 
C_  ( ( B  ^o  C )  .o  A ) ) )
14 oesuc 7247 . . . . . . . . . . 11  |-  ( ( A  e.  On  /\  C  e.  On )  ->  ( A  ^o  suc  C )  =  ( ( A  ^o  C )  .o  A ) )
15143adant2 1049 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( A  ^o  suc  C )  =  ( ( A  ^o  C )  .o  A ) )
1615sseq1d 3445 . . . . . . . . 9  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  (
( A  ^o  suc  C )  C_  ( ( B  ^o  C )  .o  A )  <->  ( ( A  ^o  C )  .o  A )  C_  (
( B  ^o  C
)  .o  A ) ) )
1713, 16sylibrd 242 . . . . . . . 8  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  ->  ( A  ^o  suc  C
)  C_  ( ( B  ^o  C )  .o  A ) ) )
18 ne0i 3728 . . . . . . . . . . . . . 14  |-  ( A  e.  B  ->  B  =/=  (/) )
19 on0eln0 5485 . . . . . . . . . . . . . 14  |-  ( B  e.  On  ->  ( (/) 
e.  B  <->  B  =/=  (/) ) )
2018, 19syl5ibr 229 . . . . . . . . . . . . 13  |-  ( B  e.  On  ->  ( A  e.  B  ->  (/)  e.  B ) )
2120adantr 472 . . . . . . . . . . . 12  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  -> 
(/)  e.  B )
)
22 oen0 7305 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  On  /\  C  e.  On )  /\  (/)  e.  B )  ->  (/)  e.  ( B  ^o  C ) )
2322ex 441 . . . . . . . . . . . 12  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( (/)  e.  B  -> 
(/)  e.  ( B  ^o  C ) ) )
2421, 23syld 44 . . . . . . . . . . 11  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  -> 
(/)  e.  ( B  ^o  C ) ) )
25 simpl 464 . . . . . . . . . . . . . . 15  |-  ( ( B  e.  On  /\  C  e.  On )  ->  B  e.  On )
2625, 8jca 541 . . . . . . . . . . . . . 14  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( B  e.  On  /\  ( B  ^o  C
)  e.  On ) )
27 omordi 7285 . . . . . . . . . . . . . 14  |-  ( ( ( B  e.  On  /\  ( B  ^o  C
)  e.  On )  /\  (/)  e.  ( B  ^o  C ) )  ->  ( A  e.  B  ->  ( ( B  ^o  C )  .o  A )  e.  ( ( B  ^o  C
)  .o  B ) ) )
2826, 27sylan 479 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  On  /\  C  e.  On )  /\  (/)  e.  ( B  ^o  C ) )  ->  ( A  e.  B  ->  ( ( B  ^o  C )  .o  A )  e.  ( ( B  ^o  C
)  .o  B ) ) )
2928ex 441 . . . . . . . . . . . 12  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( (/)  e.  ( B  ^o  C )  -> 
( A  e.  B  ->  ( ( B  ^o  C )  .o  A
)  e.  ( ( B  ^o  C )  .o  B ) ) ) )
3029com23 80 . . . . . . . . . . 11  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  ->  ( (/)  e.  ( B  ^o  C )  -> 
( ( B  ^o  C )  .o  A
)  e.  ( ( B  ^o  C )  .o  B ) ) ) )
3124, 30mpdd 40 . . . . . . . . . 10  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  ->  ( ( B  ^o  C )  .o  A
)  e.  ( ( B  ^o  C )  .o  B ) ) )
32313adant1 1048 . . . . . . . . 9  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  ->  ( ( B  ^o  C
)  .o  A )  e.  ( ( B  ^o  C )  .o  B ) ) )
33 oesuc 7247 . . . . . . . . . . 11  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( B  ^o  suc  C )  =  ( ( B  ^o  C )  .o  B ) )
34333adant1 1048 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( B  ^o  suc  C )  =  ( ( B  ^o  C )  .o  B ) )
3534eleq2d 2534 . . . . . . . . 9  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  (
( ( B  ^o  C )  .o  A
)  e.  ( B  ^o  suc  C )  <-> 
( ( B  ^o  C )  .o  A
)  e.  ( ( B  ^o  C )  .o  B ) ) )
3632, 35sylibrd 242 . . . . . . . 8  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  ->  ( ( B  ^o  C
)  .o  A )  e.  ( B  ^o  suc  C ) ) )
3717, 36jcad 542 . . . . . . 7  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  ->  ( ( A  ^o  suc  C )  C_  ( ( B  ^o  C )  .o  A )  /\  (
( B  ^o  C
)  .o  A )  e.  ( B  ^o  suc  C ) ) ) )
38373expa 1231 . . . . . 6  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  C  e.  On )  ->  ( A  e.  B  ->  ( ( A  ^o  suc  C ) 
C_  ( ( B  ^o  C )  .o  A )  /\  (
( B  ^o  C
)  .o  A )  e.  ( B  ^o  suc  C ) ) ) )
39 sucelon 6663 . . . . . . 7  |-  ( C  e.  On  <->  suc  C  e.  On )
40 oecl 7257 . . . . . . . . 9  |-  ( ( A  e.  On  /\  suc  C  e.  On )  ->  ( A  ^o  suc  C )  e.  On )
41 oecl 7257 . . . . . . . . 9  |-  ( ( B  e.  On  /\  suc  C  e.  On )  ->  ( B  ^o  suc  C )  e.  On )
42 ontr2 5477 . . . . . . . . 9  |-  ( ( ( A  ^o  suc  C )  e.  On  /\  ( B  ^o  suc  C
)  e.  On )  ->  ( ( ( A  ^o  suc  C
)  C_  ( ( B  ^o  C )  .o  A )  /\  (
( B  ^o  C
)  .o  A )  e.  ( B  ^o  suc  C ) )  -> 
( A  ^o  suc  C )  e.  ( B  ^o  suc  C ) ) )
4340, 41, 42syl2an 485 . . . . . . . 8  |-  ( ( ( A  e.  On  /\ 
suc  C  e.  On )  /\  ( B  e.  On  /\  suc  C  e.  On ) )  -> 
( ( ( A  ^o  suc  C ) 
C_  ( ( B  ^o  C )  .o  A )  /\  (
( B  ^o  C
)  .o  A )  e.  ( B  ^o  suc  C ) )  -> 
( A  ^o  suc  C )  e.  ( B  ^o  suc  C ) ) )
4443anandirs 847 . . . . . . 7  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  suc  C  e.  On )  ->  (
( ( A  ^o  suc  C )  C_  (
( B  ^o  C
)  .o  A )  /\  ( ( B  ^o  C )  .o  A )  e.  ( B  ^o  suc  C
) )  ->  ( A  ^o  suc  C )  e.  ( B  ^o  suc  C ) ) )
4539, 44sylan2b 483 . . . . . 6  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  C  e.  On )  ->  ( ( ( A  ^o  suc  C
)  C_  ( ( B  ^o  C )  .o  A )  /\  (
( B  ^o  C
)  .o  A )  e.  ( B  ^o  suc  C ) )  -> 
( A  ^o  suc  C )  e.  ( B  ^o  suc  C ) ) )
4638, 45syld 44 . . . . 5  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  C  e.  On )  ->  ( A  e.  B  ->  ( A  ^o  suc  C )  e.  ( B  ^o  suc  C ) ) )
4746exp31 615 . . . 4  |-  ( A  e.  On  ->  ( B  e.  On  ->  ( C  e.  On  ->  ( A  e.  B  -> 
( A  ^o  suc  C )  e.  ( B  ^o  suc  C ) ) ) ) )
4847com4l 86 . . 3  |-  ( B  e.  On  ->  ( C  e.  On  ->  ( A  e.  B  -> 
( A  e.  On  ->  ( A  ^o  suc  C )  e.  ( B  ^o  suc  C ) ) ) ) )
4948imp 436 . 2  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  ->  ( A  e.  On  ->  ( A  ^o  suc  C )  e.  ( B  ^o  suc  C ) ) ) )
503, 49mpdd 40 1  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  ->  ( A  ^o  suc  C )  e.  ( B  ^o  suc  C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 376    /\ w3a 1007    = wceq 1452    e. wcel 1904    =/= wne 2641    C_ wss 3390   (/)c0 3722   Oncon0 5430   suc csuc 5432  (class class class)co 6308    .o comu 7198    ^o coe 7199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-oadd 7204  df-omul 7205  df-oexp 7206
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator