MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeordsuc Structured version   Visualization version   Unicode version

Theorem oeordsuc 7300
Description: Ordering property of ordinal exponentiation with a successor exponent. Corollary 8.36 of [TakeutiZaring] p. 68. (Contributed by NM, 7-Jan-2005.)
Assertion
Ref Expression
oeordsuc  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  ->  ( A  ^o  suc  C )  e.  ( B  ^o  suc  C ) ) )

Proof of Theorem oeordsuc
StepHypRef Expression
1 onelon 5451 . . . 4  |-  ( ( B  e.  On  /\  A  e.  B )  ->  A  e.  On )
21ex 436 . . 3  |-  ( B  e.  On  ->  ( A  e.  B  ->  A  e.  On ) )
32adantr 467 . 2  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  ->  A  e.  On ) )
4 oewordri 7298 . . . . . . . . . . 11  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  ->  ( A  ^o  C
)  C_  ( B  ^o  C ) ) )
543adant1 1027 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  ->  ( A  ^o  C ) 
C_  ( B  ^o  C ) ) )
6 oecl 7244 . . . . . . . . . . . 12  |-  ( ( A  e.  On  /\  C  e.  On )  ->  ( A  ^o  C
)  e.  On )
763adant2 1028 . . . . . . . . . . 11  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( A  ^o  C )  e.  On )
8 oecl 7244 . . . . . . . . . . . 12  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( B  ^o  C
)  e.  On )
983adant1 1027 . . . . . . . . . . 11  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( B  ^o  C )  e.  On )
10 simp1 1009 . . . . . . . . . . 11  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  A  e.  On )
11 omwordri 7278 . . . . . . . . . . 11  |-  ( ( ( A  ^o  C
)  e.  On  /\  ( B  ^o  C )  e.  On  /\  A  e.  On )  ->  (
( A  ^o  C
)  C_  ( B  ^o  C )  ->  (
( A  ^o  C
)  .o  A ) 
C_  ( ( B  ^o  C )  .o  A ) ) )
127, 9, 10, 11syl3anc 1269 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  (
( A  ^o  C
)  C_  ( B  ^o  C )  ->  (
( A  ^o  C
)  .o  A ) 
C_  ( ( B  ^o  C )  .o  A ) ) )
135, 12syld 45 . . . . . . . . 9  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  ->  ( ( A  ^o  C
)  .o  A ) 
C_  ( ( B  ^o  C )  .o  A ) ) )
14 oesuc 7234 . . . . . . . . . . 11  |-  ( ( A  e.  On  /\  C  e.  On )  ->  ( A  ^o  suc  C )  =  ( ( A  ^o  C )  .o  A ) )
15143adant2 1028 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( A  ^o  suc  C )  =  ( ( A  ^o  C )  .o  A ) )
1615sseq1d 3461 . . . . . . . . 9  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  (
( A  ^o  suc  C )  C_  ( ( B  ^o  C )  .o  A )  <->  ( ( A  ^o  C )  .o  A )  C_  (
( B  ^o  C
)  .o  A ) ) )
1713, 16sylibrd 238 . . . . . . . 8  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  ->  ( A  ^o  suc  C
)  C_  ( ( B  ^o  C )  .o  A ) ) )
18 ne0i 3739 . . . . . . . . . . . . . 14  |-  ( A  e.  B  ->  B  =/=  (/) )
19 on0eln0 5481 . . . . . . . . . . . . . 14  |-  ( B  e.  On  ->  ( (/) 
e.  B  <->  B  =/=  (/) ) )
2018, 19syl5ibr 225 . . . . . . . . . . . . 13  |-  ( B  e.  On  ->  ( A  e.  B  ->  (/)  e.  B ) )
2120adantr 467 . . . . . . . . . . . 12  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  -> 
(/)  e.  B )
)
22 oen0 7292 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  On  /\  C  e.  On )  /\  (/)  e.  B )  ->  (/)  e.  ( B  ^o  C ) )
2322ex 436 . . . . . . . . . . . 12  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( (/)  e.  B  -> 
(/)  e.  ( B  ^o  C ) ) )
2421, 23syld 45 . . . . . . . . . . 11  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  -> 
(/)  e.  ( B  ^o  C ) ) )
25 simpl 459 . . . . . . . . . . . . . . 15  |-  ( ( B  e.  On  /\  C  e.  On )  ->  B  e.  On )
2625, 8jca 535 . . . . . . . . . . . . . 14  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( B  e.  On  /\  ( B  ^o  C
)  e.  On ) )
27 omordi 7272 . . . . . . . . . . . . . 14  |-  ( ( ( B  e.  On  /\  ( B  ^o  C
)  e.  On )  /\  (/)  e.  ( B  ^o  C ) )  ->  ( A  e.  B  ->  ( ( B  ^o  C )  .o  A )  e.  ( ( B  ^o  C
)  .o  B ) ) )
2826, 27sylan 474 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  On  /\  C  e.  On )  /\  (/)  e.  ( B  ^o  C ) )  ->  ( A  e.  B  ->  ( ( B  ^o  C )  .o  A )  e.  ( ( B  ^o  C
)  .o  B ) ) )
2928ex 436 . . . . . . . . . . . 12  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( (/)  e.  ( B  ^o  C )  -> 
( A  e.  B  ->  ( ( B  ^o  C )  .o  A
)  e.  ( ( B  ^o  C )  .o  B ) ) ) )
3029com23 81 . . . . . . . . . . 11  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  ->  ( (/)  e.  ( B  ^o  C )  -> 
( ( B  ^o  C )  .o  A
)  e.  ( ( B  ^o  C )  .o  B ) ) ) )
3124, 30mpdd 41 . . . . . . . . . 10  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  ->  ( ( B  ^o  C )  .o  A
)  e.  ( ( B  ^o  C )  .o  B ) ) )
32313adant1 1027 . . . . . . . . 9  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  ->  ( ( B  ^o  C
)  .o  A )  e.  ( ( B  ^o  C )  .o  B ) ) )
33 oesuc 7234 . . . . . . . . . . 11  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( B  ^o  suc  C )  =  ( ( B  ^o  C )  .o  B ) )
34333adant1 1027 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( B  ^o  suc  C )  =  ( ( B  ^o  C )  .o  B ) )
3534eleq2d 2516 . . . . . . . . 9  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  (
( ( B  ^o  C )  .o  A
)  e.  ( B  ^o  suc  C )  <-> 
( ( B  ^o  C )  .o  A
)  e.  ( ( B  ^o  C )  .o  B ) ) )
3632, 35sylibrd 238 . . . . . . . 8  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  ->  ( ( B  ^o  C
)  .o  A )  e.  ( B  ^o  suc  C ) ) )
3717, 36jcad 536 . . . . . . 7  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  ->  ( ( A  ^o  suc  C )  C_  ( ( B  ^o  C )  .o  A )  /\  (
( B  ^o  C
)  .o  A )  e.  ( B  ^o  suc  C ) ) ) )
38373expa 1209 . . . . . 6  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  C  e.  On )  ->  ( A  e.  B  ->  ( ( A  ^o  suc  C ) 
C_  ( ( B  ^o  C )  .o  A )  /\  (
( B  ^o  C
)  .o  A )  e.  ( B  ^o  suc  C ) ) ) )
39 sucelon 6649 . . . . . . 7  |-  ( C  e.  On  <->  suc  C  e.  On )
40 oecl 7244 . . . . . . . . 9  |-  ( ( A  e.  On  /\  suc  C  e.  On )  ->  ( A  ^o  suc  C )  e.  On )
41 oecl 7244 . . . . . . . . 9  |-  ( ( B  e.  On  /\  suc  C  e.  On )  ->  ( B  ^o  suc  C )  e.  On )
42 ontr2 5473 . . . . . . . . 9  |-  ( ( ( A  ^o  suc  C )  e.  On  /\  ( B  ^o  suc  C
)  e.  On )  ->  ( ( ( A  ^o  suc  C
)  C_  ( ( B  ^o  C )  .o  A )  /\  (
( B  ^o  C
)  .o  A )  e.  ( B  ^o  suc  C ) )  -> 
( A  ^o  suc  C )  e.  ( B  ^o  suc  C ) ) )
4340, 41, 42syl2an 480 . . . . . . . 8  |-  ( ( ( A  e.  On  /\ 
suc  C  e.  On )  /\  ( B  e.  On  /\  suc  C  e.  On ) )  -> 
( ( ( A  ^o  suc  C ) 
C_  ( ( B  ^o  C )  .o  A )  /\  (
( B  ^o  C
)  .o  A )  e.  ( B  ^o  suc  C ) )  -> 
( A  ^o  suc  C )  e.  ( B  ^o  suc  C ) ) )
4443anandirs 841 . . . . . . 7  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  suc  C  e.  On )  ->  (
( ( A  ^o  suc  C )  C_  (
( B  ^o  C
)  .o  A )  /\  ( ( B  ^o  C )  .o  A )  e.  ( B  ^o  suc  C
) )  ->  ( A  ^o  suc  C )  e.  ( B  ^o  suc  C ) ) )
4539, 44sylan2b 478 . . . . . 6  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  C  e.  On )  ->  ( ( ( A  ^o  suc  C
)  C_  ( ( B  ^o  C )  .o  A )  /\  (
( B  ^o  C
)  .o  A )  e.  ( B  ^o  suc  C ) )  -> 
( A  ^o  suc  C )  e.  ( B  ^o  suc  C ) ) )
4638, 45syld 45 . . . . 5  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  C  e.  On )  ->  ( A  e.  B  ->  ( A  ^o  suc  C )  e.  ( B  ^o  suc  C ) ) )
4746exp31 609 . . . 4  |-  ( A  e.  On  ->  ( B  e.  On  ->  ( C  e.  On  ->  ( A  e.  B  -> 
( A  ^o  suc  C )  e.  ( B  ^o  suc  C ) ) ) ) )
4847com4l 87 . . 3  |-  ( B  e.  On  ->  ( C  e.  On  ->  ( A  e.  B  -> 
( A  e.  On  ->  ( A  ^o  suc  C )  e.  ( B  ^o  suc  C ) ) ) ) )
4948imp 431 . 2  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  ->  ( A  e.  On  ->  ( A  ^o  suc  C )  e.  ( B  ^o  suc  C ) ) ) )
503, 49mpdd 41 1  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  ->  ( A  ^o  suc  C )  e.  ( B  ^o  suc  C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371    /\ w3a 986    = wceq 1446    e. wcel 1889    =/= wne 2624    C_ wss 3406   (/)c0 3733   Oncon0 5426   suc csuc 5428  (class class class)co 6295    .o comu 7185    ^o coe 7186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1671  ax-4 1684  ax-5 1760  ax-6 1807  ax-7 1853  ax-8 1891  ax-9 1898  ax-10 1917  ax-11 1922  ax-12 1935  ax-13 2093  ax-ext 2433  ax-rep 4518  ax-sep 4528  ax-nul 4537  ax-pow 4584  ax-pr 4642  ax-un 6588
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 987  df-3an 988  df-tru 1449  df-ex 1666  df-nf 1670  df-sb 1800  df-eu 2305  df-mo 2306  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2583  df-ne 2626  df-ral 2744  df-rex 2745  df-reu 2746  df-rab 2748  df-v 3049  df-sbc 3270  df-csb 3366  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-pss 3422  df-nul 3734  df-if 3884  df-pw 3955  df-sn 3971  df-pr 3973  df-tp 3975  df-op 3977  df-uni 4202  df-iun 4283  df-br 4406  df-opab 4465  df-mpt 4466  df-tr 4501  df-eprel 4748  df-id 4752  df-po 4758  df-so 4759  df-fr 4796  df-we 4798  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-pred 5383  df-ord 5429  df-on 5430  df-lim 5431  df-suc 5432  df-iota 5549  df-fun 5587  df-fn 5588  df-f 5589  df-f1 5590  df-fo 5591  df-f1o 5592  df-fv 5593  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6698  df-1st 6798  df-2nd 6799  df-wrecs 7033  df-recs 7095  df-rdg 7133  df-1o 7187  df-oadd 7191  df-omul 7192  df-oexp 7193
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator