MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeordsuc Structured version   Unicode version

Theorem oeordsuc 7301
Description: Ordering property of ordinal exponentiation with a successor exponent. Corollary 8.36 of [TakeutiZaring] p. 68. (Contributed by NM, 7-Jan-2005.)
Assertion
Ref Expression
oeordsuc  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  ->  ( A  ^o  suc  C )  e.  ( B  ^o  suc  C ) ) )

Proof of Theorem oeordsuc
StepHypRef Expression
1 onelon 5465 . . . 4  |-  ( ( B  e.  On  /\  A  e.  B )  ->  A  e.  On )
21ex 436 . . 3  |-  ( B  e.  On  ->  ( A  e.  B  ->  A  e.  On ) )
32adantr 467 . 2  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  ->  A  e.  On ) )
4 oewordri 7299 . . . . . . . . . . 11  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  ->  ( A  ^o  C
)  C_  ( B  ^o  C ) ) )
543adant1 1024 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  ->  ( A  ^o  C ) 
C_  ( B  ^o  C ) ) )
6 oecl 7245 . . . . . . . . . . . 12  |-  ( ( A  e.  On  /\  C  e.  On )  ->  ( A  ^o  C
)  e.  On )
763adant2 1025 . . . . . . . . . . 11  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( A  ^o  C )  e.  On )
8 oecl 7245 . . . . . . . . . . . 12  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( B  ^o  C
)  e.  On )
983adant1 1024 . . . . . . . . . . 11  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( B  ^o  C )  e.  On )
10 simp1 1006 . . . . . . . . . . 11  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  A  e.  On )
11 omwordri 7279 . . . . . . . . . . 11  |-  ( ( ( A  ^o  C
)  e.  On  /\  ( B  ^o  C )  e.  On  /\  A  e.  On )  ->  (
( A  ^o  C
)  C_  ( B  ^o  C )  ->  (
( A  ^o  C
)  .o  A ) 
C_  ( ( B  ^o  C )  .o  A ) ) )
127, 9, 10, 11syl3anc 1265 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  (
( A  ^o  C
)  C_  ( B  ^o  C )  ->  (
( A  ^o  C
)  .o  A ) 
C_  ( ( B  ^o  C )  .o  A ) ) )
135, 12syld 46 . . . . . . . . 9  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  ->  ( ( A  ^o  C
)  .o  A ) 
C_  ( ( B  ^o  C )  .o  A ) ) )
14 oesuc 7235 . . . . . . . . . . 11  |-  ( ( A  e.  On  /\  C  e.  On )  ->  ( A  ^o  suc  C )  =  ( ( A  ^o  C )  .o  A ) )
15143adant2 1025 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( A  ^o  suc  C )  =  ( ( A  ^o  C )  .o  A ) )
1615sseq1d 3492 . . . . . . . . 9  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  (
( A  ^o  suc  C )  C_  ( ( B  ^o  C )  .o  A )  <->  ( ( A  ^o  C )  .o  A )  C_  (
( B  ^o  C
)  .o  A ) ) )
1713, 16sylibrd 238 . . . . . . . 8  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  ->  ( A  ^o  suc  C
)  C_  ( ( B  ^o  C )  .o  A ) ) )
18 ne0i 3768 . . . . . . . . . . . . . 14  |-  ( A  e.  B  ->  B  =/=  (/) )
19 on0eln0 5495 . . . . . . . . . . . . . 14  |-  ( B  e.  On  ->  ( (/) 
e.  B  <->  B  =/=  (/) ) )
2018, 19syl5ibr 225 . . . . . . . . . . . . 13  |-  ( B  e.  On  ->  ( A  e.  B  ->  (/)  e.  B ) )
2120adantr 467 . . . . . . . . . . . 12  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  -> 
(/)  e.  B )
)
22 oen0 7293 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  On  /\  C  e.  On )  /\  (/)  e.  B )  ->  (/)  e.  ( B  ^o  C ) )
2322ex 436 . . . . . . . . . . . 12  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( (/)  e.  B  -> 
(/)  e.  ( B  ^o  C ) ) )
2421, 23syld 46 . . . . . . . . . . 11  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  -> 
(/)  e.  ( B  ^o  C ) ) )
25 simpl 459 . . . . . . . . . . . . . . 15  |-  ( ( B  e.  On  /\  C  e.  On )  ->  B  e.  On )
2625, 8jca 535 . . . . . . . . . . . . . 14  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( B  e.  On  /\  ( B  ^o  C
)  e.  On ) )
27 omordi 7273 . . . . . . . . . . . . . 14  |-  ( ( ( B  e.  On  /\  ( B  ^o  C
)  e.  On )  /\  (/)  e.  ( B  ^o  C ) )  ->  ( A  e.  B  ->  ( ( B  ^o  C )  .o  A )  e.  ( ( B  ^o  C
)  .o  B ) ) )
2826, 27sylan 474 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  On  /\  C  e.  On )  /\  (/)  e.  ( B  ^o  C ) )  ->  ( A  e.  B  ->  ( ( B  ^o  C )  .o  A )  e.  ( ( B  ^o  C
)  .o  B ) ) )
2928ex 436 . . . . . . . . . . . 12  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( (/)  e.  ( B  ^o  C )  -> 
( A  e.  B  ->  ( ( B  ^o  C )  .o  A
)  e.  ( ( B  ^o  C )  .o  B ) ) ) )
3029com23 82 . . . . . . . . . . 11  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  ->  ( (/)  e.  ( B  ^o  C )  -> 
( ( B  ^o  C )  .o  A
)  e.  ( ( B  ^o  C )  .o  B ) ) ) )
3124, 30mpdd 42 . . . . . . . . . 10  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  ->  ( ( B  ^o  C )  .o  A
)  e.  ( ( B  ^o  C )  .o  B ) ) )
32313adant1 1024 . . . . . . . . 9  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  ->  ( ( B  ^o  C
)  .o  A )  e.  ( ( B  ^o  C )  .o  B ) ) )
33 oesuc 7235 . . . . . . . . . . 11  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( B  ^o  suc  C )  =  ( ( B  ^o  C )  .o  B ) )
34333adant1 1024 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( B  ^o  suc  C )  =  ( ( B  ^o  C )  .o  B ) )
3534eleq2d 2493 . . . . . . . . 9  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  (
( ( B  ^o  C )  .o  A
)  e.  ( B  ^o  suc  C )  <-> 
( ( B  ^o  C )  .o  A
)  e.  ( ( B  ^o  C )  .o  B ) ) )
3632, 35sylibrd 238 . . . . . . . 8  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  ->  ( ( B  ^o  C
)  .o  A )  e.  ( B  ^o  suc  C ) ) )
3717, 36jcad 536 . . . . . . 7  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  ->  ( ( A  ^o  suc  C )  C_  ( ( B  ^o  C )  .o  A )  /\  (
( B  ^o  C
)  .o  A )  e.  ( B  ^o  suc  C ) ) ) )
38373expa 1206 . . . . . 6  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  C  e.  On )  ->  ( A  e.  B  ->  ( ( A  ^o  suc  C ) 
C_  ( ( B  ^o  C )  .o  A )  /\  (
( B  ^o  C
)  .o  A )  e.  ( B  ^o  suc  C ) ) ) )
39 sucelon 6656 . . . . . . 7  |-  ( C  e.  On  <->  suc  C  e.  On )
40 oecl 7245 . . . . . . . . 9  |-  ( ( A  e.  On  /\  suc  C  e.  On )  ->  ( A  ^o  suc  C )  e.  On )
41 oecl 7245 . . . . . . . . 9  |-  ( ( B  e.  On  /\  suc  C  e.  On )  ->  ( B  ^o  suc  C )  e.  On )
42 ontr2 5487 . . . . . . . . 9  |-  ( ( ( A  ^o  suc  C )  e.  On  /\  ( B  ^o  suc  C
)  e.  On )  ->  ( ( ( A  ^o  suc  C
)  C_  ( ( B  ^o  C )  .o  A )  /\  (
( B  ^o  C
)  .o  A )  e.  ( B  ^o  suc  C ) )  -> 
( A  ^o  suc  C )  e.  ( B  ^o  suc  C ) ) )
4340, 41, 42syl2an 480 . . . . . . . 8  |-  ( ( ( A  e.  On  /\ 
suc  C  e.  On )  /\  ( B  e.  On  /\  suc  C  e.  On ) )  -> 
( ( ( A  ^o  suc  C ) 
C_  ( ( B  ^o  C )  .o  A )  /\  (
( B  ^o  C
)  .o  A )  e.  ( B  ^o  suc  C ) )  -> 
( A  ^o  suc  C )  e.  ( B  ^o  suc  C ) ) )
4443anandirs 839 . . . . . . 7  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  suc  C  e.  On )  ->  (
( ( A  ^o  suc  C )  C_  (
( B  ^o  C
)  .o  A )  /\  ( ( B  ^o  C )  .o  A )  e.  ( B  ^o  suc  C
) )  ->  ( A  ^o  suc  C )  e.  ( B  ^o  suc  C ) ) )
4539, 44sylan2b 478 . . . . . 6  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  C  e.  On )  ->  ( ( ( A  ^o  suc  C
)  C_  ( ( B  ^o  C )  .o  A )  /\  (
( B  ^o  C
)  .o  A )  e.  ( B  ^o  suc  C ) )  -> 
( A  ^o  suc  C )  e.  ( B  ^o  suc  C ) ) )
4638, 45syld 46 . . . . 5  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  C  e.  On )  ->  ( A  e.  B  ->  ( A  ^o  suc  C )  e.  ( B  ^o  suc  C ) ) )
4746exp31 608 . . . 4  |-  ( A  e.  On  ->  ( B  e.  On  ->  ( C  e.  On  ->  ( A  e.  B  -> 
( A  ^o  suc  C )  e.  ( B  ^o  suc  C ) ) ) ) )
4847com4l 88 . . 3  |-  ( B  e.  On  ->  ( C  e.  On  ->  ( A  e.  B  -> 
( A  e.  On  ->  ( A  ^o  suc  C )  e.  ( B  ^o  suc  C ) ) ) ) )
4948imp 431 . 2  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  ->  ( A  e.  On  ->  ( A  ^o  suc  C )  e.  ( B  ^o  suc  C ) ) ) )
503, 49mpdd 42 1  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  ->  ( A  ^o  suc  C )  e.  ( B  ^o  suc  C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371    /\ w3a 983    = wceq 1438    e. wcel 1869    =/= wne 2619    C_ wss 3437   (/)c0 3762   Oncon0 5440   suc csuc 5442  (class class class)co 6303    .o comu 7186    ^o coe 7187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-8 1871  ax-9 1873  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401  ax-rep 4534  ax-sep 4544  ax-nul 4553  ax-pow 4600  ax-pr 4658  ax-un 6595
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 984  df-3an 985  df-tru 1441  df-ex 1661  df-nf 1665  df-sb 1788  df-eu 2270  df-mo 2271  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-ral 2781  df-rex 2782  df-reu 2783  df-rab 2785  df-v 3084  df-sbc 3301  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3763  df-if 3911  df-pw 3982  df-sn 3998  df-pr 4000  df-tp 4002  df-op 4004  df-uni 4218  df-iun 4299  df-br 4422  df-opab 4481  df-mpt 4482  df-tr 4517  df-eprel 4762  df-id 4766  df-po 4772  df-so 4773  df-fr 4810  df-we 4812  df-xp 4857  df-rel 4858  df-cnv 4859  df-co 4860  df-dm 4861  df-rn 4862  df-res 4863  df-ima 4864  df-pred 5397  df-ord 5443  df-on 5444  df-lim 5445  df-suc 5446  df-iota 5563  df-fun 5601  df-fn 5602  df-f 5603  df-f1 5604  df-fo 5605  df-f1o 5606  df-fv 5607  df-ov 6306  df-oprab 6307  df-mpt2 6308  df-om 6705  df-1st 6805  df-2nd 6806  df-wrecs 7034  df-recs 7096  df-rdg 7134  df-1o 7188  df-oadd 7192  df-omul 7193  df-oexp 7194
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator