MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeord Structured version   Unicode version

Theorem oeord 7129
Description: Ordering property of ordinal exponentiation. Corollary 8.34 of [TakeutiZaring] p. 68 and its converse. (Contributed by NM, 6-Jan-2005.) (Revised by Mario Carneiro, 24-May-2015.)
Assertion
Ref Expression
oeord  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  ( On  \  2o ) )  ->  ( A  e.  B  <->  ( C  ^o  A )  e.  ( C  ^o  B ) ) )

Proof of Theorem oeord
StepHypRef Expression
1 oeordi 7128 . . 3  |-  ( ( B  e.  On  /\  C  e.  ( On  \  2o ) )  -> 
( A  e.  B  ->  ( C  ^o  A
)  e.  ( C  ^o  B ) ) )
213adant1 1006 . 2  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  ( On  \  2o ) )  ->  ( A  e.  B  ->  ( C  ^o  A )  e.  ( C  ^o  B ) ) )
3 oveq2 6200 . . . . . 6  |-  ( A  =  B  ->  ( C  ^o  A )  =  ( C  ^o  B
) )
43a1i 11 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  ( On  \  2o ) )  ->  ( A  =  B  ->  ( C  ^o  A )  =  ( C  ^o  B ) ) )
5 oeordi 7128 . . . . . 6  |-  ( ( A  e.  On  /\  C  e.  ( On  \  2o ) )  -> 
( B  e.  A  ->  ( C  ^o  B
)  e.  ( C  ^o  A ) ) )
653adant2 1007 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  ( On  \  2o ) )  ->  ( B  e.  A  ->  ( C  ^o  B )  e.  ( C  ^o  A ) ) )
74, 6orim12d 834 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  ( On  \  2o ) )  ->  (
( A  =  B  \/  B  e.  A
)  ->  ( ( C  ^o  A )  =  ( C  ^o  B
)  \/  ( C  ^o  B )  e.  ( C  ^o  A
) ) ) )
87con3d 133 . . 3  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  ( On  \  2o ) )  ->  ( -.  ( ( C  ^o  A )  =  ( C  ^o  B )  \/  ( C  ^o  B )  e.  ( C  ^o  A ) )  ->  -.  ( A  =  B  \/  B  e.  A )
) )
9 eldifi 3578 . . . . . 6  |-  ( C  e.  ( On  \  2o )  ->  C  e.  On )
1093ad2ant3 1011 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  ( On  \  2o ) )  ->  C  e.  On )
11 simp1 988 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  ( On  \  2o ) )  ->  A  e.  On )
12 oecl 7079 . . . . 5  |-  ( ( C  e.  On  /\  A  e.  On )  ->  ( C  ^o  A
)  e.  On )
1310, 11, 12syl2anc 661 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  ( On  \  2o ) )  ->  ( C  ^o  A )  e.  On )
14 simp2 989 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  ( On  \  2o ) )  ->  B  e.  On )
15 oecl 7079 . . . . 5  |-  ( ( C  e.  On  /\  B  e.  On )  ->  ( C  ^o  B
)  e.  On )
1610, 14, 15syl2anc 661 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  ( On  \  2o ) )  ->  ( C  ^o  B )  e.  On )
17 eloni 4829 . . . . 5  |-  ( ( C  ^o  A )  e.  On  ->  Ord  ( C  ^o  A ) )
18 eloni 4829 . . . . 5  |-  ( ( C  ^o  B )  e.  On  ->  Ord  ( C  ^o  B ) )
19 ordtri2 4854 . . . . 5  |-  ( ( Ord  ( C  ^o  A )  /\  Ord  ( C  ^o  B ) )  ->  ( ( C  ^o  A )  e.  ( C  ^o  B
)  <->  -.  ( ( C  ^o  A )  =  ( C  ^o  B
)  \/  ( C  ^o  B )  e.  ( C  ^o  A
) ) ) )
2017, 18, 19syl2an 477 . . . 4  |-  ( ( ( C  ^o  A
)  e.  On  /\  ( C  ^o  B )  e.  On )  -> 
( ( C  ^o  A )  e.  ( C  ^o  B )  <->  -.  ( ( C  ^o  A )  =  ( C  ^o  B )  \/  ( C  ^o  B )  e.  ( C  ^o  A ) ) ) )
2113, 16, 20syl2anc 661 . . 3  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  ( On  \  2o ) )  ->  (
( C  ^o  A
)  e.  ( C  ^o  B )  <->  -.  (
( C  ^o  A
)  =  ( C  ^o  B )  \/  ( C  ^o  B
)  e.  ( C  ^o  A ) ) ) )
22 eloni 4829 . . . . 5  |-  ( A  e.  On  ->  Ord  A )
23 eloni 4829 . . . . 5  |-  ( B  e.  On  ->  Ord  B )
24 ordtri2 4854 . . . . 5  |-  ( ( Ord  A  /\  Ord  B )  ->  ( A  e.  B  <->  -.  ( A  =  B  \/  B  e.  A ) ) )
2522, 23, 24syl2an 477 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  e.  B  <->  -.  ( A  =  B  \/  B  e.  A
) ) )
26253adant3 1008 . . 3  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  ( On  \  2o ) )  ->  ( A  e.  B  <->  -.  ( A  =  B  \/  B  e.  A )
) )
278, 21, 263imtr4d 268 . 2  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  ( On  \  2o ) )  ->  (
( C  ^o  A
)  e.  ( C  ^o  B )  ->  A  e.  B )
)
282, 27impbid 191 1  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  ( On  \  2o ) )  ->  ( A  e.  B  <->  ( C  ^o  A )  e.  ( C  ^o  B ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ w3a 965    = wceq 1370    e. wcel 1758    \ cdif 3425   Ord word 4818   Oncon0 4819  (class class class)co 6192   2oc2o 7016    ^o coe 7021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4503  ax-sep 4513  ax-nul 4521  ax-pow 4570  ax-pr 4631  ax-un 6474
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-reu 2802  df-rab 2804  df-v 3072  df-sbc 3287  df-csb 3389  df-dif 3431  df-un 3433  df-in 3435  df-ss 3442  df-pss 3444  df-nul 3738  df-if 3892  df-pw 3962  df-sn 3978  df-pr 3980  df-tp 3982  df-op 3984  df-uni 4192  df-iun 4273  df-br 4393  df-opab 4451  df-mpt 4452  df-tr 4486  df-eprel 4732  df-id 4736  df-po 4741  df-so 4742  df-fr 4779  df-we 4781  df-ord 4822  df-on 4823  df-lim 4824  df-suc 4825  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5481  df-fun 5520  df-fn 5521  df-f 5522  df-f1 5523  df-fo 5524  df-f1o 5525  df-fv 5526  df-ov 6195  df-oprab 6196  df-mpt2 6197  df-om 6579  df-recs 6934  df-rdg 6968  df-1o 7022  df-2o 7023  df-oadd 7026  df-omul 7027  df-oexp 7028
This theorem is referenced by:  oeword  7131  oeeui  7143  omabs  7188  cantnflem3  8002  cantnflem3OLD  8024
  Copyright terms: Public domain W3C validator