MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeoelem Structured version   Visualization version   Unicode version

Theorem oeoelem 7296
Description: Lemma for oeoe 7297. (Contributed by Eric Schmidt, 26-May-2009.)
Hypotheses
Ref Expression
oeoelem.1  |-  A  e.  On
oeoelem.2  |-  (/)  e.  A
Assertion
Ref Expression
oeoelem  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( ( A  ^o  B )  ^o  C
)  =  ( A  ^o  ( B  .o  C ) ) )

Proof of Theorem oeoelem
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6296 . . . 4  |-  ( x  =  (/)  ->  ( ( A  ^o  B )  ^o  x )  =  ( ( A  ^o  B )  ^o  (/) ) )
2 oveq2 6296 . . . . 5  |-  ( x  =  (/)  ->  ( B  .o  x )  =  ( B  .o  (/) ) )
32oveq2d 6304 . . . 4  |-  ( x  =  (/)  ->  ( A  ^o  ( B  .o  x ) )  =  ( A  ^o  ( B  .o  (/) ) ) )
41, 3eqeq12d 2465 . . 3  |-  ( x  =  (/)  ->  ( ( ( A  ^o  B
)  ^o  x )  =  ( A  ^o  ( B  .o  x
) )  <->  ( ( A  ^o  B )  ^o  (/) )  =  ( A  ^o  ( B  .o  (/) ) ) ) )
5 oveq2 6296 . . . 4  |-  ( x  =  y  ->  (
( A  ^o  B
)  ^o  x )  =  ( ( A  ^o  B )  ^o  y ) )
6 oveq2 6296 . . . . 5  |-  ( x  =  y  ->  ( B  .o  x )  =  ( B  .o  y
) )
76oveq2d 6304 . . . 4  |-  ( x  =  y  ->  ( A  ^o  ( B  .o  x ) )  =  ( A  ^o  ( B  .o  y ) ) )
85, 7eqeq12d 2465 . . 3  |-  ( x  =  y  ->  (
( ( A  ^o  B )  ^o  x
)  =  ( A  ^o  ( B  .o  x ) )  <->  ( ( A  ^o  B )  ^o  y )  =  ( A  ^o  ( B  .o  y ) ) ) )
9 oveq2 6296 . . . 4  |-  ( x  =  suc  y  -> 
( ( A  ^o  B )  ^o  x
)  =  ( ( A  ^o  B )  ^o  suc  y ) )
10 oveq2 6296 . . . . 5  |-  ( x  =  suc  y  -> 
( B  .o  x
)  =  ( B  .o  suc  y ) )
1110oveq2d 6304 . . . 4  |-  ( x  =  suc  y  -> 
( A  ^o  ( B  .o  x ) )  =  ( A  ^o  ( B  .o  suc  y
) ) )
129, 11eqeq12d 2465 . . 3  |-  ( x  =  suc  y  -> 
( ( ( A  ^o  B )  ^o  x )  =  ( A  ^o  ( B  .o  x ) )  <-> 
( ( A  ^o  B )  ^o  suc  y )  =  ( A  ^o  ( B  .o  suc  y ) ) ) )
13 oveq2 6296 . . . 4  |-  ( x  =  C  ->  (
( A  ^o  B
)  ^o  x )  =  ( ( A  ^o  B )  ^o  C ) )
14 oveq2 6296 . . . . 5  |-  ( x  =  C  ->  ( B  .o  x )  =  ( B  .o  C
) )
1514oveq2d 6304 . . . 4  |-  ( x  =  C  ->  ( A  ^o  ( B  .o  x ) )  =  ( A  ^o  ( B  .o  C ) ) )
1613, 15eqeq12d 2465 . . 3  |-  ( x  =  C  ->  (
( ( A  ^o  B )  ^o  x
)  =  ( A  ^o  ( B  .o  x ) )  <->  ( ( A  ^o  B )  ^o  C )  =  ( A  ^o  ( B  .o  C ) ) ) )
17 oeoelem.1 . . . . . 6  |-  A  e.  On
18 oecl 7236 . . . . . 6  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  ^o  B
)  e.  On )
1917, 18mpan 675 . . . . 5  |-  ( B  e.  On  ->  ( A  ^o  B )  e.  On )
20 oe0 7221 . . . . 5  |-  ( ( A  ^o  B )  e.  On  ->  (
( A  ^o  B
)  ^o  (/) )  =  1o )
2119, 20syl 17 . . . 4  |-  ( B  e.  On  ->  (
( A  ^o  B
)  ^o  (/) )  =  1o )
22 om0 7216 . . . . . 6  |-  ( B  e.  On  ->  ( B  .o  (/) )  =  (/) )
2322oveq2d 6304 . . . . 5  |-  ( B  e.  On  ->  ( A  ^o  ( B  .o  (/) ) )  =  ( A  ^o  (/) ) )
24 oe0 7221 . . . . . 6  |-  ( A  e.  On  ->  ( A  ^o  (/) )  =  1o )
2517, 24ax-mp 5 . . . . 5  |-  ( A  ^o  (/) )  =  1o
2623, 25syl6eq 2500 . . . 4  |-  ( B  e.  On  ->  ( A  ^o  ( B  .o  (/) ) )  =  1o )
2721, 26eqtr4d 2487 . . 3  |-  ( B  e.  On  ->  (
( A  ^o  B
)  ^o  (/) )  =  ( A  ^o  ( B  .o  (/) ) ) )
28 oveq1 6295 . . . . 5  |-  ( ( ( A  ^o  B
)  ^o  y )  =  ( A  ^o  ( B  .o  y
) )  ->  (
( ( A  ^o  B )  ^o  y
)  .o  ( A  ^o  B ) )  =  ( ( A  ^o  ( B  .o  y ) )  .o  ( A  ^o  B
) ) )
29 oesuc 7226 . . . . . . 7  |-  ( ( ( A  ^o  B
)  e.  On  /\  y  e.  On )  ->  ( ( A  ^o  B )  ^o  suc  y )  =  ( ( ( A  ^o  B )  ^o  y
)  .o  ( A  ^o  B ) ) )
3019, 29sylan 474 . . . . . 6  |-  ( ( B  e.  On  /\  y  e.  On )  ->  ( ( A  ^o  B )  ^o  suc  y )  =  ( ( ( A  ^o  B )  ^o  y
)  .o  ( A  ^o  B ) ) )
31 omsuc 7225 . . . . . . . 8  |-  ( ( B  e.  On  /\  y  e.  On )  ->  ( B  .o  suc  y )  =  ( ( B  .o  y
)  +o  B ) )
3231oveq2d 6304 . . . . . . 7  |-  ( ( B  e.  On  /\  y  e.  On )  ->  ( A  ^o  ( B  .o  suc  y ) )  =  ( A  ^o  ( ( B  .o  y )  +o  B ) ) )
33 omcl 7235 . . . . . . . . 9  |-  ( ( B  e.  On  /\  y  e.  On )  ->  ( B  .o  y
)  e.  On )
34 oeoa 7295 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  ( B  .o  y
)  e.  On  /\  B  e.  On )  ->  ( A  ^o  (
( B  .o  y
)  +o  B ) )  =  ( ( A  ^o  ( B  .o  y ) )  .o  ( A  ^o  B ) ) )
3517, 34mp3an1 1350 . . . . . . . . 9  |-  ( ( ( B  .o  y
)  e.  On  /\  B  e.  On )  ->  ( A  ^o  (
( B  .o  y
)  +o  B ) )  =  ( ( A  ^o  ( B  .o  y ) )  .o  ( A  ^o  B ) ) )
3633, 35sylan 474 . . . . . . . 8  |-  ( ( ( B  e.  On  /\  y  e.  On )  /\  B  e.  On )  ->  ( A  ^o  ( ( B  .o  y )  +o  B
) )  =  ( ( A  ^o  ( B  .o  y ) )  .o  ( A  ^o  B ) ) )
3736anabss1 822 . . . . . . 7  |-  ( ( B  e.  On  /\  y  e.  On )  ->  ( A  ^o  (
( B  .o  y
)  +o  B ) )  =  ( ( A  ^o  ( B  .o  y ) )  .o  ( A  ^o  B ) ) )
3832, 37eqtrd 2484 . . . . . 6  |-  ( ( B  e.  On  /\  y  e.  On )  ->  ( A  ^o  ( B  .o  suc  y ) )  =  ( ( A  ^o  ( B  .o  y ) )  .o  ( A  ^o  B ) ) )
3930, 38eqeq12d 2465 . . . . 5  |-  ( ( B  e.  On  /\  y  e.  On )  ->  ( ( ( A  ^o  B )  ^o  suc  y )  =  ( A  ^o  ( B  .o  suc  y ) )  <->  ( ( ( A  ^o  B )  ^o  y )  .o  ( A  ^o  B
) )  =  ( ( A  ^o  ( B  .o  y ) )  .o  ( A  ^o  B ) ) ) )
4028, 39syl5ibr 225 . . . 4  |-  ( ( B  e.  On  /\  y  e.  On )  ->  ( ( ( A  ^o  B )  ^o  y )  =  ( A  ^o  ( B  .o  y ) )  ->  ( ( A  ^o  B )  ^o  suc  y )  =  ( A  ^o  ( B  .o  suc  y ) ) ) )
4140expcom 437 . . 3  |-  ( y  e.  On  ->  ( B  e.  On  ->  ( ( ( A  ^o  B )  ^o  y
)  =  ( A  ^o  ( B  .o  y ) )  -> 
( ( A  ^o  B )  ^o  suc  y )  =  ( A  ^o  ( B  .o  suc  y ) ) ) ) )
42 iuneq2 4294 . . . . 5  |-  ( A. y  e.  x  (
( A  ^o  B
)  ^o  y )  =  ( A  ^o  ( B  .o  y
) )  ->  U_ y  e.  x  ( ( A  ^o  B )  ^o  y )  =  U_ y  e.  x  ( A  ^o  ( B  .o  y ) ) )
43 vex 3047 . . . . . . 7  |-  x  e. 
_V
44 oeoelem.2 . . . . . . . . . . 11  |-  (/)  e.  A
45 oen0 7284 . . . . . . . . . . 11  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  (/)  e.  A )  ->  (/)  e.  ( A  ^o  B ) )
4644, 45mpan2 676 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  B  e.  On )  -> 
(/)  e.  ( A  ^o  B ) )
47 oelim 7233 . . . . . . . . . . 11  |-  ( ( ( ( A  ^o  B )  e.  On  /\  ( x  e.  _V  /\ 
Lim  x ) )  /\  (/)  e.  ( A  ^o  B ) )  ->  ( ( A  ^o  B )  ^o  x )  =  U_ y  e.  x  (
( A  ^o  B
)  ^o  y )
)
4818, 47sylanl1 655 . . . . . . . . . 10  |-  ( ( ( ( A  e.  On  /\  B  e.  On )  /\  (
x  e.  _V  /\  Lim  x ) )  /\  (/) 
e.  ( A  ^o  B ) )  -> 
( ( A  ^o  B )  ^o  x
)  =  U_ y  e.  x  ( ( A  ^o  B )  ^o  y ) )
4946, 48sylan2 477 . . . . . . . . 9  |-  ( ( ( ( A  e.  On  /\  B  e.  On )  /\  (
x  e.  _V  /\  Lim  x ) )  /\  ( A  e.  On  /\  B  e.  On ) )  ->  ( ( A  ^o  B )  ^o  x )  =  U_ y  e.  x  (
( A  ^o  B
)  ^o  y )
)
5049anabss1 822 . . . . . . . 8  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  ( x  e. 
_V  /\  Lim  x ) )  ->  ( ( A  ^o  B )  ^o  x )  =  U_ y  e.  x  (
( A  ^o  B
)  ^o  y )
)
5117, 50mpanl1 685 . . . . . . 7  |-  ( ( B  e.  On  /\  ( x  e.  _V  /\ 
Lim  x ) )  ->  ( ( A  ^o  B )  ^o  x )  =  U_ y  e.  x  (
( A  ^o  B
)  ^o  y )
)
5243, 51mpanr1 688 . . . . . 6  |-  ( ( B  e.  On  /\  Lim  x )  ->  (
( A  ^o  B
)  ^o  x )  =  U_ y  e.  x  ( ( A  ^o  B )  ^o  y
) )
53 omlim 7232 . . . . . . . . 9  |-  ( ( B  e.  On  /\  ( x  e.  _V  /\ 
Lim  x ) )  ->  ( B  .o  x )  =  U_ y  e.  x  ( B  .o  y ) )
5443, 53mpanr1 688 . . . . . . . 8  |-  ( ( B  e.  On  /\  Lim  x )  ->  ( B  .o  x )  = 
U_ y  e.  x  ( B  .o  y
) )
5554oveq2d 6304 . . . . . . 7  |-  ( ( B  e.  On  /\  Lim  x )  ->  ( A  ^o  ( B  .o  x ) )  =  ( A  ^o  U_ y  e.  x  ( B  .o  y ) ) )
5643a1i 11 . . . . . . . 8  |-  ( ( B  e.  On  /\  Lim  x )  ->  x  e.  _V )
57 limord 5481 . . . . . . . . . . . 12  |-  ( Lim  x  ->  Ord  x )
58 ordelon 5446 . . . . . . . . . . . 12  |-  ( ( Ord  x  /\  y  e.  x )  ->  y  e.  On )
5957, 58sylan 474 . . . . . . . . . . 11  |-  ( ( Lim  x  /\  y  e.  x )  ->  y  e.  On )
6059, 33sylan2 477 . . . . . . . . . 10  |-  ( ( B  e.  On  /\  ( Lim  x  /\  y  e.  x ) )  -> 
( B  .o  y
)  e.  On )
6160anassrs 653 . . . . . . . . 9  |-  ( ( ( B  e.  On  /\ 
Lim  x )  /\  y  e.  x )  ->  ( B  .o  y
)  e.  On )
6261ralrimiva 2801 . . . . . . . 8  |-  ( ( B  e.  On  /\  Lim  x )  ->  A. y  e.  x  ( B  .o  y )  e.  On )
63 0ellim 5484 . . . . . . . . . 10  |-  ( Lim  x  ->  (/)  e.  x
)
64 ne0i 3736 . . . . . . . . . 10  |-  ( (/)  e.  x  ->  x  =/=  (/) )
6563, 64syl 17 . . . . . . . . 9  |-  ( Lim  x  ->  x  =/=  (/) )
6665adantl 468 . . . . . . . 8  |-  ( ( B  e.  On  /\  Lim  x )  ->  x  =/=  (/) )
67 vex 3047 . . . . . . . . . 10  |-  w  e. 
_V
68 oelim 7233 . . . . . . . . . . . 12  |-  ( ( ( A  e.  On  /\  ( w  e.  _V  /\ 
Lim  w ) )  /\  (/)  e.  A )  ->  ( A  ^o  w )  =  U_ z  e.  w  ( A  ^o  z ) )
6944, 68mpan2 676 . . . . . . . . . . 11  |-  ( ( A  e.  On  /\  ( w  e.  _V  /\ 
Lim  w ) )  ->  ( A  ^o  w )  =  U_ z  e.  w  ( A  ^o  z ) )
7017, 69mpan 675 . . . . . . . . . 10  |-  ( ( w  e.  _V  /\  Lim  w )  ->  ( A  ^o  w )  = 
U_ z  e.  w  ( A  ^o  z
) )
7167, 70mpan 675 . . . . . . . . 9  |-  ( Lim  w  ->  ( A  ^o  w )  =  U_ z  e.  w  ( A  ^o  z ) )
72 oewordi 7289 . . . . . . . . . . . 12  |-  ( ( ( z  e.  On  /\  w  e.  On  /\  A  e.  On )  /\  (/)  e.  A )  ->  ( z  C_  w  ->  ( A  ^o  z )  C_  ( A  ^o  w ) ) )
7344, 72mpan2 676 . . . . . . . . . . 11  |-  ( ( z  e.  On  /\  w  e.  On  /\  A  e.  On )  ->  (
z  C_  w  ->  ( A  ^o  z ) 
C_  ( A  ^o  w ) ) )
7417, 73mp3an3 1352 . . . . . . . . . 10  |-  ( ( z  e.  On  /\  w  e.  On )  ->  ( z  C_  w  ->  ( A  ^o  z
)  C_  ( A  ^o  w ) ) )
75743impia 1204 . . . . . . . . 9  |-  ( ( z  e.  On  /\  w  e.  On  /\  z  C_  w )  ->  ( A  ^o  z )  C_  ( A  ^o  w
) )
7671, 75onoviun 7059 . . . . . . . 8  |-  ( ( x  e.  _V  /\  A. y  e.  x  ( B  .o  y )  e.  On  /\  x  =/=  (/) )  ->  ( A  ^o  U_ y  e.  x  ( B  .o  y ) )  = 
U_ y  e.  x  ( A  ^o  ( B  .o  y ) ) )
7756, 62, 66, 76syl3anc 1267 . . . . . . 7  |-  ( ( B  e.  On  /\  Lim  x )  ->  ( A  ^o  U_ y  e.  x  ( B  .o  y ) )  = 
U_ y  e.  x  ( A  ^o  ( B  .o  y ) ) )
7855, 77eqtrd 2484 . . . . . 6  |-  ( ( B  e.  On  /\  Lim  x )  ->  ( A  ^o  ( B  .o  x ) )  = 
U_ y  e.  x  ( A  ^o  ( B  .o  y ) ) )
7952, 78eqeq12d 2465 . . . . 5  |-  ( ( B  e.  On  /\  Lim  x )  ->  (
( ( A  ^o  B )  ^o  x
)  =  ( A  ^o  ( B  .o  x ) )  <->  U_ y  e.  x  ( ( A  ^o  B )  ^o  y )  =  U_ y  e.  x  ( A  ^o  ( B  .o  y ) ) ) )
8042, 79syl5ibr 225 . . . 4  |-  ( ( B  e.  On  /\  Lim  x )  ->  ( A. y  e.  x  ( ( A  ^o  B )  ^o  y
)  =  ( A  ^o  ( B  .o  y ) )  -> 
( ( A  ^o  B )  ^o  x
)  =  ( A  ^o  ( B  .o  x ) ) ) )
8180expcom 437 . . 3  |-  ( Lim  x  ->  ( B  e.  On  ->  ( A. y  e.  x  (
( A  ^o  B
)  ^o  y )  =  ( A  ^o  ( B  .o  y
) )  ->  (
( A  ^o  B
)  ^o  x )  =  ( A  ^o  ( B  .o  x
) ) ) ) )
824, 8, 12, 16, 27, 41, 81tfinds3 6688 . 2  |-  ( C  e.  On  ->  ( B  e.  On  ->  ( ( A  ^o  B
)  ^o  C )  =  ( A  ^o  ( B  .o  C
) ) ) )
8382impcom 432 1  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( ( A  ^o  B )  ^o  C
)  =  ( A  ^o  ( B  .o  C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371    /\ w3a 984    = wceq 1443    e. wcel 1886    =/= wne 2621   A.wral 2736   _Vcvv 3044    C_ wss 3403   (/)c0 3730   U_ciun 4277   Ord word 5421   Oncon0 5422   Lim wlim 5423   suc csuc 5424  (class class class)co 6288   1oc1o 7172    +o coa 7176    .o comu 7177    ^o coe 7178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-8 1888  ax-9 1895  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430  ax-rep 4514  ax-sep 4524  ax-nul 4533  ax-pow 4580  ax-pr 4638  ax-un 6580
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 985  df-3an 986  df-tru 1446  df-ex 1663  df-nf 1667  df-sb 1797  df-eu 2302  df-mo 2303  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ne 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 3046  df-sbc 3267  df-csb 3363  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-pss 3419  df-nul 3731  df-if 3881  df-pw 3952  df-sn 3968  df-pr 3970  df-tp 3972  df-op 3974  df-uni 4198  df-int 4234  df-iun 4279  df-br 4402  df-opab 4461  df-mpt 4462  df-tr 4497  df-eprel 4744  df-id 4748  df-po 4754  df-so 4755  df-fr 4792  df-we 4794  df-xp 4839  df-rel 4840  df-cnv 4841  df-co 4842  df-dm 4843  df-rn 4844  df-res 4845  df-ima 4846  df-pred 5379  df-ord 5425  df-on 5426  df-lim 5427  df-suc 5428  df-iota 5545  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-ov 6291  df-oprab 6292  df-mpt2 6293  df-om 6690  df-1st 6790  df-2nd 6791  df-wrecs 7025  df-recs 7087  df-rdg 7125  df-1o 7179  df-2o 7180  df-oadd 7183  df-omul 7184  df-oexp 7185
This theorem is referenced by:  oeoe  7297
  Copyright terms: Public domain W3C validator