MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeoe Structured version   Visualization version   Unicode version

Theorem oeoe 7300
Description: Product of exponents law for ordinal exponentiation. Theorem 8S of [Enderton] p. 238. Also Proposition 8.42 of [TakeutiZaring] p. 70. (Contributed by Eric Schmidt, 26-May-2009.)
Assertion
Ref Expression
oeoe  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  (
( A  ^o  B
)  ^o  C )  =  ( A  ^o  ( B  .o  C
) ) )

Proof of Theorem oeoe
StepHypRef Expression
1 oveq2 6298 . . . . . . . . . . . 12  |-  ( B  =  (/)  ->  ( (/)  ^o  B )  =  (
(/)  ^o  (/) ) )
2 oe0m0 7222 . . . . . . . . . . . 12  |-  ( (/)  ^o  (/) )  =  1o
31, 2syl6eq 2501 . . . . . . . . . . 11  |-  ( B  =  (/)  ->  ( (/)  ^o  B )  =  1o )
43oveq1d 6305 . . . . . . . . . 10  |-  ( B  =  (/)  ->  ( (
(/)  ^o  B )  ^o  C )  =  ( 1o  ^o  C ) )
5 oe1m 7246 . . . . . . . . . 10  |-  ( C  e.  On  ->  ( 1o  ^o  C )  =  1o )
64, 5sylan9eqr 2507 . . . . . . . . 9  |-  ( ( C  e.  On  /\  B  =  (/) )  -> 
( ( (/)  ^o  B
)  ^o  C )  =  1o )
76adantll 720 . . . . . . . 8  |-  ( ( ( B  e.  On  /\  C  e.  On )  /\  B  =  (/) )  ->  ( ( (/)  ^o  B )  ^o  C
)  =  1o )
8 oveq2 6298 . . . . . . . . . 10  |-  ( C  =  (/)  ->  ( (
(/)  ^o  B )  ^o  C )  =  ( ( (/)  ^o  B )  ^o  (/) ) )
9 0elon 5476 . . . . . . . . . . . 12  |-  (/)  e.  On
10 oecl 7239 . . . . . . . . . . . 12  |-  ( (
(/)  e.  On  /\  B  e.  On )  ->  ( (/) 
^o  B )  e.  On )
119, 10mpan 676 . . . . . . . . . . 11  |-  ( B  e.  On  ->  ( (/) 
^o  B )  e.  On )
12 oe0 7224 . . . . . . . . . . 11  |-  ( (
(/)  ^o  B )  e.  On  ->  ( ( (/) 
^o  B )  ^o  (/) )  =  1o )
1311, 12syl 17 . . . . . . . . . 10  |-  ( B  e.  On  ->  (
( (/)  ^o  B )  ^o  (/) )  =  1o )
148, 13sylan9eqr 2507 . . . . . . . . 9  |-  ( ( B  e.  On  /\  C  =  (/) )  -> 
( ( (/)  ^o  B
)  ^o  C )  =  1o )
1514adantlr 721 . . . . . . . 8  |-  ( ( ( B  e.  On  /\  C  e.  On )  /\  C  =  (/) )  ->  ( ( (/)  ^o  B )  ^o  C
)  =  1o )
167, 15jaodan 794 . . . . . . 7  |-  ( ( ( B  e.  On  /\  C  e.  On )  /\  ( B  =  (/)  \/  C  =  (/) ) )  ->  (
( (/)  ^o  B )  ^o  C )  =  1o )
17 om00 7276 . . . . . . . . . 10  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( ( B  .o  C )  =  (/)  <->  ( B  =  (/)  \/  C  =  (/) ) ) )
1817biimpar 488 . . . . . . . . 9  |-  ( ( ( B  e.  On  /\  C  e.  On )  /\  ( B  =  (/)  \/  C  =  (/) ) )  ->  ( B  .o  C )  =  (/) )
1918oveq2d 6306 . . . . . . . 8  |-  ( ( ( B  e.  On  /\  C  e.  On )  /\  ( B  =  (/)  \/  C  =  (/) ) )  ->  ( (/) 
^o  ( B  .o  C ) )  =  ( (/)  ^o  (/) ) )
2019, 2syl6eq 2501 . . . . . . 7  |-  ( ( ( B  e.  On  /\  C  e.  On )  /\  ( B  =  (/)  \/  C  =  (/) ) )  ->  ( (/) 
^o  ( B  .o  C ) )  =  1o )
2116, 20eqtr4d 2488 . . . . . 6  |-  ( ( ( B  e.  On  /\  C  e.  On )  /\  ( B  =  (/)  \/  C  =  (/) ) )  ->  (
( (/)  ^o  B )  ^o  C )  =  ( (/)  ^o  ( B  .o  C ) ) )
22 on0eln0 5478 . . . . . . . . . 10  |-  ( B  e.  On  ->  ( (/) 
e.  B  <->  B  =/=  (/) ) )
23 on0eln0 5478 . . . . . . . . . 10  |-  ( C  e.  On  ->  ( (/) 
e.  C  <->  C  =/=  (/) ) )
2422, 23bi2anan9 884 . . . . . . . . 9  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( ( (/)  e.  B  /\  (/)  e.  C )  <-> 
( B  =/=  (/)  /\  C  =/=  (/) ) ) )
25 neanior 2716 . . . . . . . . 9  |-  ( ( B  =/=  (/)  /\  C  =/=  (/) )  <->  -.  ( B  =  (/)  \/  C  =  (/) ) )
2624, 25syl6bb 265 . . . . . . . 8  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( ( (/)  e.  B  /\  (/)  e.  C )  <->  -.  ( B  =  (/)  \/  C  =  (/) ) ) )
27 oe0m1 7223 . . . . . . . . . . . . . 14  |-  ( B  e.  On  ->  ( (/) 
e.  B  <->  ( (/)  ^o  B
)  =  (/) ) )
2827biimpa 487 . . . . . . . . . . . . 13  |-  ( ( B  e.  On  /\  (/) 
e.  B )  -> 
( (/)  ^o  B )  =  (/) )
2928oveq1d 6305 . . . . . . . . . . . 12  |-  ( ( B  e.  On  /\  (/) 
e.  B )  -> 
( ( (/)  ^o  B
)  ^o  C )  =  ( (/)  ^o  C
) )
30 oe0m1 7223 . . . . . . . . . . . . 13  |-  ( C  e.  On  ->  ( (/) 
e.  C  <->  ( (/)  ^o  C
)  =  (/) ) )
3130biimpa 487 . . . . . . . . . . . 12  |-  ( ( C  e.  On  /\  (/) 
e.  C )  -> 
( (/)  ^o  C )  =  (/) )
3229, 31sylan9eq 2505 . . . . . . . . . . 11  |-  ( ( ( B  e.  On  /\  (/)  e.  B )  /\  ( C  e.  On  /\  (/)  e.  C ) )  ->  ( ( (/)  ^o  B )  ^o  C
)  =  (/) )
3332an4s 835 . . . . . . . . . 10  |-  ( ( ( B  e.  On  /\  C  e.  On )  /\  ( (/)  e.  B  /\  (/)  e.  C ) )  ->  ( ( (/) 
^o  B )  ^o  C )  =  (/) )
34 om00el 7277 . . . . . . . . . . . 12  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( (/)  e.  ( B  .o  C )  <->  ( (/)  e.  B  /\  (/)  e.  C ) ) )
35 omcl 7238 . . . . . . . . . . . . 13  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( B  .o  C
)  e.  On )
36 oe0m1 7223 . . . . . . . . . . . . 13  |-  ( ( B  .o  C )  e.  On  ->  ( (/) 
e.  ( B  .o  C )  <->  ( (/)  ^o  ( B  .o  C ) )  =  (/) ) )
3735, 36syl 17 . . . . . . . . . . . 12  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( (/)  e.  ( B  .o  C )  <->  ( (/)  ^o  ( B  .o  C ) )  =  (/) ) )
3834, 37bitr3d 259 . . . . . . . . . . 11  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( ( (/)  e.  B  /\  (/)  e.  C )  <-> 
( (/)  ^o  ( B  .o  C ) )  =  (/) ) )
3938biimpa 487 . . . . . . . . . 10  |-  ( ( ( B  e.  On  /\  C  e.  On )  /\  ( (/)  e.  B  /\  (/)  e.  C ) )  ->  ( (/)  ^o  ( B  .o  C ) )  =  (/) )
4033, 39eqtr4d 2488 . . . . . . . . 9  |-  ( ( ( B  e.  On  /\  C  e.  On )  /\  ( (/)  e.  B  /\  (/)  e.  C ) )  ->  ( ( (/) 
^o  B )  ^o  C )  =  (
(/)  ^o  ( B  .o  C ) ) )
4140ex 436 . . . . . . . 8  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( ( (/)  e.  B  /\  (/)  e.  C )  ->  ( ( (/)  ^o  B )  ^o  C
)  =  ( (/)  ^o  ( B  .o  C
) ) ) )
4226, 41sylbird 239 . . . . . . 7  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( -.  ( B  =  (/)  \/  C  =  (/) )  ->  (
( (/)  ^o  B )  ^o  C )  =  ( (/)  ^o  ( B  .o  C ) ) ) )
4342imp 431 . . . . . 6  |-  ( ( ( B  e.  On  /\  C  e.  On )  /\  -.  ( B  =  (/)  \/  C  =  (/) ) )  -> 
( ( (/)  ^o  B
)  ^o  C )  =  ( (/)  ^o  ( B  .o  C ) ) )
4421, 43pm2.61dan 800 . . . . 5  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( ( (/)  ^o  B
)  ^o  C )  =  ( (/)  ^o  ( B  .o  C ) ) )
45 oveq1 6297 . . . . . . 7  |-  ( A  =  (/)  ->  ( A  ^o  B )  =  ( (/)  ^o  B ) )
4645oveq1d 6305 . . . . . 6  |-  ( A  =  (/)  ->  ( ( A  ^o  B )  ^o  C )  =  ( ( (/)  ^o  B
)  ^o  C )
)
47 oveq1 6297 . . . . . 6  |-  ( A  =  (/)  ->  ( A  ^o  ( B  .o  C ) )  =  ( (/)  ^o  ( B  .o  C ) ) )
4846, 47eqeq12d 2466 . . . . 5  |-  ( A  =  (/)  ->  ( ( ( A  ^o  B
)  ^o  C )  =  ( A  ^o  ( B  .o  C
) )  <->  ( ( (/) 
^o  B )  ^o  C )  =  (
(/)  ^o  ( B  .o  C ) ) ) )
4944, 48syl5ibr 225 . . . 4  |-  ( A  =  (/)  ->  ( ( B  e.  On  /\  C  e.  On )  ->  ( ( A  ^o  B )  ^o  C
)  =  ( A  ^o  ( B  .o  C ) ) ) )
5049impcom 432 . . 3  |-  ( ( ( B  e.  On  /\  C  e.  On )  /\  A  =  (/) )  ->  ( ( A  ^o  B )  ^o  C )  =  ( A  ^o  ( B  .o  C ) ) )
51 oveq1 6297 . . . . . . . . 9  |-  ( A  =  if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ->  ( A  ^o  B )  =  ( if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o )  ^o  B ) )
5251oveq1d 6305 . . . . . . . 8  |-  ( A  =  if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ->  ( ( A  ^o  B )  ^o  C )  =  ( ( if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ^o  B )  ^o  C ) )
53 oveq1 6297 . . . . . . . 8  |-  ( A  =  if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ->  ( A  ^o  ( B  .o  C
) )  =  ( if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o )  ^o  ( B  .o  C ) ) )
5452, 53eqeq12d 2466 . . . . . . 7  |-  ( A  =  if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ->  ( ( ( A  ^o  B )  ^o  C )  =  ( A  ^o  ( B  .o  C ) )  <-> 
( ( if ( ( A  e.  On  /\  (/)  e.  A ) ,  A ,  1o )  ^o  B )  ^o  C )  =  ( if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o )  ^o  ( B  .o  C ) ) ) )
5554imbi2d 318 . . . . . 6  |-  ( A  =  if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ->  ( ( ( B  e.  On  /\  C  e.  On )  ->  ( ( A  ^o  B )  ^o  C
)  =  ( A  ^o  ( B  .o  C ) ) )  <-> 
( ( B  e.  On  /\  C  e.  On )  ->  (
( if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ^o  B )  ^o  C )  =  ( if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o )  ^o  ( B  .o  C ) ) ) ) )
56 eleq1 2517 . . . . . . . . . 10  |-  ( A  =  if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ->  ( A  e.  On  <->  if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o )  e.  On ) )
57 eleq2 2518 . . . . . . . . . 10  |-  ( A  =  if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ->  ( (/)  e.  A  <->  (/)  e.  if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o ) ) )
5856, 57anbi12d 717 . . . . . . . . 9  |-  ( A  =  if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ->  ( ( A  e.  On  /\  (/)  e.  A
)  <->  ( if ( ( A  e.  On  /\  (/)  e.  A ) ,  A ,  1o )  e.  On  /\  (/)  e.  if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o ) ) ) )
59 eleq1 2517 . . . . . . . . . 10  |-  ( 1o  =  if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ->  ( 1o  e.  On 
<->  if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o )  e.  On ) )
60 eleq2 2518 . . . . . . . . . 10  |-  ( 1o  =  if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ->  ( (/)  e.  1o  <->  (/)  e.  if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o ) ) )
6159, 60anbi12d 717 . . . . . . . . 9  |-  ( 1o  =  if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ->  ( ( 1o  e.  On  /\  (/)  e.  1o ) 
<->  ( if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  e.  On  /\  (/)  e.  if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o ) ) ) )
62 1on 7189 . . . . . . . . . 10  |-  1o  e.  On
63 0lt1o 7206 . . . . . . . . . 10  |-  (/)  e.  1o
6462, 63pm3.2i 457 . . . . . . . . 9  |-  ( 1o  e.  On  /\  (/)  e.  1o )
6558, 61, 64elimhyp 3939 . . . . . . . 8  |-  ( if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o )  e.  On  /\  (/)  e.  if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o ) )
6665simpli 460 . . . . . . 7  |-  if ( ( A  e.  On  /\  (/)  e.  A ) ,  A ,  1o )  e.  On
6765simpri 464 . . . . . . 7  |-  (/)  e.  if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o )
6866, 67oeoelem 7299 . . . . . 6  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( ( if ( ( A  e.  On  /\  (/)  e.  A ) ,  A ,  1o )  ^o  B )  ^o  C )  =  ( if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o )  ^o  ( B  .o  C ) ) )
6955, 68dedth 3932 . . . . 5  |-  ( ( A  e.  On  /\  (/) 
e.  A )  -> 
( ( B  e.  On  /\  C  e.  On )  ->  (
( A  ^o  B
)  ^o  C )  =  ( A  ^o  ( B  .o  C
) ) ) )
7069imp 431 . . . 4  |-  ( ( ( A  e.  On  /\  (/)  e.  A )  /\  ( B  e.  On  /\  C  e.  On ) )  ->  ( ( A  ^o  B )  ^o  C )  =  ( A  ^o  ( B  .o  C ) ) )
7170an32s 813 . . 3  |-  ( ( ( A  e.  On  /\  ( B  e.  On  /\  C  e.  On ) )  /\  (/)  e.  A
)  ->  ( ( A  ^o  B )  ^o  C )  =  ( A  ^o  ( B  .o  C ) ) )
7250, 71oe0lem 7215 . 2  |-  ( ( A  e.  On  /\  ( B  e.  On  /\  C  e.  On ) )  ->  ( ( A  ^o  B )  ^o  C )  =  ( A  ^o  ( B  .o  C ) ) )
73723impb 1204 1  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  (
( A  ^o  B
)  ^o  C )  =  ( A  ^o  ( B  .o  C
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    \/ wo 370    /\ wa 371    /\ w3a 985    = wceq 1444    e. wcel 1887    =/= wne 2622   (/)c0 3731   ifcif 3881   Oncon0 5423  (class class class)co 6290   1oc1o 7175    .o comu 7180    ^o coe 7181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-int 4235  df-iun 4280  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-om 6693  df-1st 6793  df-2nd 6794  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-1o 7182  df-2o 7183  df-oadd 7186  df-omul 7187  df-oexp 7188
This theorem is referenced by:  infxpenc  8449
  Copyright terms: Public domain W3C validator