MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeoalem Structured version   Visualization version   Unicode version

Theorem oeoalem 7302
Description: Lemma for oeoa 7303. (Contributed by Eric Schmidt, 26-May-2009.)
Hypotheses
Ref Expression
oeoalem.1  |-  A  e.  On
oeoalem.2  |-  (/)  e.  A
oeoalem.3  |-  B  e.  On
Assertion
Ref Expression
oeoalem  |-  ( C  e.  On  ->  ( A  ^o  ( B  +o  C ) )  =  ( ( A  ^o  B )  .o  ( A  ^o  C ) ) )

Proof of Theorem oeoalem
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6303 . . . 4  |-  ( x  =  (/)  ->  ( B  +o  x )  =  ( B  +o  (/) ) )
21oveq2d 6311 . . 3  |-  ( x  =  (/)  ->  ( A  ^o  ( B  +o  x ) )  =  ( A  ^o  ( B  +o  (/) ) ) )
3 oveq2 6303 . . . 4  |-  ( x  =  (/)  ->  ( A  ^o  x )  =  ( A  ^o  (/) ) )
43oveq2d 6311 . . 3  |-  ( x  =  (/)  ->  ( ( A  ^o  B )  .o  ( A  ^o  x ) )  =  ( ( A  ^o  B )  .o  ( A  ^o  (/) ) ) )
52, 4eqeq12d 2468 . 2  |-  ( x  =  (/)  ->  ( ( A  ^o  ( B  +o  x ) )  =  ( ( A  ^o  B )  .o  ( A  ^o  x
) )  <->  ( A  ^o  ( B  +o  (/) ) )  =  ( ( A  ^o  B )  .o  ( A  ^o  (/) ) ) ) )
6 oveq2 6303 . . . 4  |-  ( x  =  y  ->  ( B  +o  x )  =  ( B  +o  y
) )
76oveq2d 6311 . . 3  |-  ( x  =  y  ->  ( A  ^o  ( B  +o  x ) )  =  ( A  ^o  ( B  +o  y ) ) )
8 oveq2 6303 . . . 4  |-  ( x  =  y  ->  ( A  ^o  x )  =  ( A  ^o  y
) )
98oveq2d 6311 . . 3  |-  ( x  =  y  ->  (
( A  ^o  B
)  .o  ( A  ^o  x ) )  =  ( ( A  ^o  B )  .o  ( A  ^o  y
) ) )
107, 9eqeq12d 2468 . 2  |-  ( x  =  y  ->  (
( A  ^o  ( B  +o  x ) )  =  ( ( A  ^o  B )  .o  ( A  ^o  x
) )  <->  ( A  ^o  ( B  +o  y
) )  =  ( ( A  ^o  B
)  .o  ( A  ^o  y ) ) ) )
11 oveq2 6303 . . . 4  |-  ( x  =  suc  y  -> 
( B  +o  x
)  =  ( B  +o  suc  y ) )
1211oveq2d 6311 . . 3  |-  ( x  =  suc  y  -> 
( A  ^o  ( B  +o  x ) )  =  ( A  ^o  ( B  +o  suc  y
) ) )
13 oveq2 6303 . . . 4  |-  ( x  =  suc  y  -> 
( A  ^o  x
)  =  ( A  ^o  suc  y ) )
1413oveq2d 6311 . . 3  |-  ( x  =  suc  y  -> 
( ( A  ^o  B )  .o  ( A  ^o  x ) )  =  ( ( A  ^o  B )  .o  ( A  ^o  suc  y ) ) )
1512, 14eqeq12d 2468 . 2  |-  ( x  =  suc  y  -> 
( ( A  ^o  ( B  +o  x
) )  =  ( ( A  ^o  B
)  .o  ( A  ^o  x ) )  <-> 
( A  ^o  ( B  +o  suc  y ) )  =  ( ( A  ^o  B )  .o  ( A  ^o  suc  y ) ) ) )
16 oveq2 6303 . . . 4  |-  ( x  =  C  ->  ( B  +o  x )  =  ( B  +o  C
) )
1716oveq2d 6311 . . 3  |-  ( x  =  C  ->  ( A  ^o  ( B  +o  x ) )  =  ( A  ^o  ( B  +o  C ) ) )
18 oveq2 6303 . . . 4  |-  ( x  =  C  ->  ( A  ^o  x )  =  ( A  ^o  C
) )
1918oveq2d 6311 . . 3  |-  ( x  =  C  ->  (
( A  ^o  B
)  .o  ( A  ^o  x ) )  =  ( ( A  ^o  B )  .o  ( A  ^o  C
) ) )
2017, 19eqeq12d 2468 . 2  |-  ( x  =  C  ->  (
( A  ^o  ( B  +o  x ) )  =  ( ( A  ^o  B )  .o  ( A  ^o  x
) )  <->  ( A  ^o  ( B  +o  C
) )  =  ( ( A  ^o  B
)  .o  ( A  ^o  C ) ) ) )
21 oeoalem.1 . . . . 5  |-  A  e.  On
22 oeoalem.3 . . . . 5  |-  B  e.  On
23 oecl 7244 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  ^o  B
)  e.  On )
2421, 22, 23mp2an 679 . . . 4  |-  ( A  ^o  B )  e.  On
25 om1 7248 . . . 4  |-  ( ( A  ^o  B )  e.  On  ->  (
( A  ^o  B
)  .o  1o )  =  ( A  ^o  B ) )
2624, 25ax-mp 5 . . 3  |-  ( ( A  ^o  B )  .o  1o )  =  ( A  ^o  B
)
27 oe0 7229 . . . . 5  |-  ( A  e.  On  ->  ( A  ^o  (/) )  =  1o )
2821, 27ax-mp 5 . . . 4  |-  ( A  ^o  (/) )  =  1o
2928oveq2i 6306 . . 3  |-  ( ( A  ^o  B )  .o  ( A  ^o  (/) ) )  =  ( ( A  ^o  B
)  .o  1o )
30 oa0 7223 . . . . 5  |-  ( B  e.  On  ->  ( B  +o  (/) )  =  B )
3122, 30ax-mp 5 . . . 4  |-  ( B  +o  (/) )  =  B
3231oveq2i 6306 . . 3  |-  ( A  ^o  ( B  +o  (/) ) )  =  ( A  ^o  B )
3326, 29, 323eqtr4ri 2486 . 2  |-  ( A  ^o  ( B  +o  (/) ) )  =  ( ( A  ^o  B
)  .o  ( A  ^o  (/) ) )
34 oasuc 7231 . . . . . . . 8  |-  ( ( B  e.  On  /\  y  e.  On )  ->  ( B  +o  suc  y )  =  suc  ( B  +o  y
) )
3534oveq2d 6311 . . . . . . 7  |-  ( ( B  e.  On  /\  y  e.  On )  ->  ( A  ^o  ( B  +o  suc  y ) )  =  ( A  ^o  suc  ( B  +o  y ) ) )
36 oacl 7242 . . . . . . . 8  |-  ( ( B  e.  On  /\  y  e.  On )  ->  ( B  +o  y
)  e.  On )
37 oesuc 7234 . . . . . . . 8  |-  ( ( A  e.  On  /\  ( B  +o  y
)  e.  On )  ->  ( A  ^o  suc  ( B  +o  y
) )  =  ( ( A  ^o  ( B  +o  y ) )  .o  A ) )
3821, 36, 37sylancr 670 . . . . . . 7  |-  ( ( B  e.  On  /\  y  e.  On )  ->  ( A  ^o  suc  ( B  +o  y
) )  =  ( ( A  ^o  ( B  +o  y ) )  .o  A ) )
3935, 38eqtrd 2487 . . . . . 6  |-  ( ( B  e.  On  /\  y  e.  On )  ->  ( A  ^o  ( B  +o  suc  y ) )  =  ( ( A  ^o  ( B  +o  y ) )  .o  A ) )
4022, 39mpan 677 . . . . 5  |-  ( y  e.  On  ->  ( A  ^o  ( B  +o  suc  y ) )  =  ( ( A  ^o  ( B  +o  y
) )  .o  A
) )
41 oveq1 6302 . . . . 5  |-  ( ( A  ^o  ( B  +o  y ) )  =  ( ( A  ^o  B )  .o  ( A  ^o  y
) )  ->  (
( A  ^o  ( B  +o  y ) )  .o  A )  =  ( ( ( A  ^o  B )  .o  ( A  ^o  y
) )  .o  A
) )
4240, 41sylan9eq 2507 . . . 4  |-  ( ( y  e.  On  /\  ( A  ^o  ( B  +o  y ) )  =  ( ( A  ^o  B )  .o  ( A  ^o  y
) ) )  -> 
( A  ^o  ( B  +o  suc  y ) )  =  ( ( ( A  ^o  B
)  .o  ( A  ^o  y ) )  .o  A ) )
43 oecl 7244 . . . . . . . 8  |-  ( ( A  e.  On  /\  y  e.  On )  ->  ( A  ^o  y
)  e.  On )
44 omass 7286 . . . . . . . . 9  |-  ( ( ( A  ^o  B
)  e.  On  /\  ( A  ^o  y
)  e.  On  /\  A  e.  On )  ->  ( ( ( A  ^o  B )  .o  ( A  ^o  y
) )  .o  A
)  =  ( ( A  ^o  B )  .o  ( ( A  ^o  y )  .o  A ) ) )
4524, 21, 44mp3an13 1357 . . . . . . . 8  |-  ( ( A  ^o  y )  e.  On  ->  (
( ( A  ^o  B )  .o  ( A  ^o  y ) )  .o  A )  =  ( ( A  ^o  B )  .o  (
( A  ^o  y
)  .o  A ) ) )
4643, 45syl 17 . . . . . . 7  |-  ( ( A  e.  On  /\  y  e.  On )  ->  ( ( ( A  ^o  B )  .o  ( A  ^o  y
) )  .o  A
)  =  ( ( A  ^o  B )  .o  ( ( A  ^o  y )  .o  A ) ) )
47 oesuc 7234 . . . . . . . 8  |-  ( ( A  e.  On  /\  y  e.  On )  ->  ( A  ^o  suc  y )  =  ( ( A  ^o  y
)  .o  A ) )
4847oveq2d 6311 . . . . . . 7  |-  ( ( A  e.  On  /\  y  e.  On )  ->  ( ( A  ^o  B )  .o  ( A  ^o  suc  y ) )  =  ( ( A  ^o  B )  .o  ( ( A  ^o  y )  .o  A ) ) )
4946, 48eqtr4d 2490 . . . . . 6  |-  ( ( A  e.  On  /\  y  e.  On )  ->  ( ( ( A  ^o  B )  .o  ( A  ^o  y
) )  .o  A
)  =  ( ( A  ^o  B )  .o  ( A  ^o  suc  y ) ) )
5021, 49mpan 677 . . . . 5  |-  ( y  e.  On  ->  (
( ( A  ^o  B )  .o  ( A  ^o  y ) )  .o  A )  =  ( ( A  ^o  B )  .o  ( A  ^o  suc  y ) ) )
5150adantr 467 . . . 4  |-  ( ( y  e.  On  /\  ( A  ^o  ( B  +o  y ) )  =  ( ( A  ^o  B )  .o  ( A  ^o  y
) ) )  -> 
( ( ( A  ^o  B )  .o  ( A  ^o  y
) )  .o  A
)  =  ( ( A  ^o  B )  .o  ( A  ^o  suc  y ) ) )
5242, 51eqtrd 2487 . . 3  |-  ( ( y  e.  On  /\  ( A  ^o  ( B  +o  y ) )  =  ( ( A  ^o  B )  .o  ( A  ^o  y
) ) )  -> 
( A  ^o  ( B  +o  suc  y ) )  =  ( ( A  ^o  B )  .o  ( A  ^o  suc  y ) ) )
5352ex 436 . 2  |-  ( y  e.  On  ->  (
( A  ^o  ( B  +o  y ) )  =  ( ( A  ^o  B )  .o  ( A  ^o  y
) )  ->  ( A  ^o  ( B  +o  suc  y ) )  =  ( ( A  ^o  B )  .o  ( A  ^o  suc  y ) ) ) )
54 vex 3050 . . . . . . . 8  |-  x  e. 
_V
55 oalim 7239 . . . . . . . . 9  |-  ( ( B  e.  On  /\  ( x  e.  _V  /\ 
Lim  x ) )  ->  ( B  +o  x )  =  U_ y  e.  x  ( B  +o  y ) )
5622, 55mpan 677 . . . . . . . 8  |-  ( ( x  e.  _V  /\  Lim  x )  ->  ( B  +o  x )  = 
U_ y  e.  x  ( B  +o  y
) )
5754, 56mpan 677 . . . . . . 7  |-  ( Lim  x  ->  ( B  +o  x )  =  U_ y  e.  x  ( B  +o  y ) )
5857oveq2d 6311 . . . . . 6  |-  ( Lim  x  ->  ( A  ^o  ( B  +o  x
) )  =  ( A  ^o  U_ y  e.  x  ( B  +o  y ) ) )
5954a1i 11 . . . . . . 7  |-  ( Lim  x  ->  x  e.  _V )
60 limord 5485 . . . . . . . . . 10  |-  ( Lim  x  ->  Ord  x )
61 ordelon 5450 . . . . . . . . . 10  |-  ( ( Ord  x  /\  y  e.  x )  ->  y  e.  On )
6260, 61sylan 474 . . . . . . . . 9  |-  ( ( Lim  x  /\  y  e.  x )  ->  y  e.  On )
6322, 62, 36sylancr 670 . . . . . . . 8  |-  ( ( Lim  x  /\  y  e.  x )  ->  ( B  +o  y )  e.  On )
6463ralrimiva 2804 . . . . . . 7  |-  ( Lim  x  ->  A. y  e.  x  ( B  +o  y )  e.  On )
65 0ellim 5488 . . . . . . . 8  |-  ( Lim  x  ->  (/)  e.  x
)
66 ne0i 3739 . . . . . . . 8  |-  ( (/)  e.  x  ->  x  =/=  (/) )
6765, 66syl 17 . . . . . . 7  |-  ( Lim  x  ->  x  =/=  (/) )
68 vex 3050 . . . . . . . . 9  |-  w  e. 
_V
69 oeoalem.2 . . . . . . . . . . 11  |-  (/)  e.  A
70 oelim 7241 . . . . . . . . . . 11  |-  ( ( ( A  e.  On  /\  ( w  e.  _V  /\ 
Lim  w ) )  /\  (/)  e.  A )  ->  ( A  ^o  w )  =  U_ z  e.  w  ( A  ^o  z ) )
7169, 70mpan2 678 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  ( w  e.  _V  /\ 
Lim  w ) )  ->  ( A  ^o  w )  =  U_ z  e.  w  ( A  ^o  z ) )
7221, 71mpan 677 . . . . . . . . 9  |-  ( ( w  e.  _V  /\  Lim  w )  ->  ( A  ^o  w )  = 
U_ z  e.  w  ( A  ^o  z
) )
7368, 72mpan 677 . . . . . . . 8  |-  ( Lim  w  ->  ( A  ^o  w )  =  U_ z  e.  w  ( A  ^o  z ) )
74 oewordi 7297 . . . . . . . . . . 11  |-  ( ( ( z  e.  On  /\  w  e.  On  /\  A  e.  On )  /\  (/)  e.  A )  ->  ( z  C_  w  ->  ( A  ^o  z )  C_  ( A  ^o  w ) ) )
7569, 74mpan2 678 . . . . . . . . . 10  |-  ( ( z  e.  On  /\  w  e.  On  /\  A  e.  On )  ->  (
z  C_  w  ->  ( A  ^o  z ) 
C_  ( A  ^o  w ) ) )
7621, 75mp3an3 1355 . . . . . . . . 9  |-  ( ( z  e.  On  /\  w  e.  On )  ->  ( z  C_  w  ->  ( A  ^o  z
)  C_  ( A  ^o  w ) ) )
77763impia 1206 . . . . . . . 8  |-  ( ( z  e.  On  /\  w  e.  On  /\  z  C_  w )  ->  ( A  ^o  z )  C_  ( A  ^o  w
) )
7873, 77onoviun 7067 . . . . . . 7  |-  ( ( x  e.  _V  /\  A. y  e.  x  ( B  +o  y )  e.  On  /\  x  =/=  (/) )  ->  ( A  ^o  U_ y  e.  x  ( B  +o  y ) )  = 
U_ y  e.  x  ( A  ^o  ( B  +o  y ) ) )
7959, 64, 67, 78syl3anc 1269 . . . . . 6  |-  ( Lim  x  ->  ( A  ^o  U_ y  e.  x  ( B  +o  y
) )  =  U_ y  e.  x  ( A  ^o  ( B  +o  y ) ) )
8058, 79eqtrd 2487 . . . . 5  |-  ( Lim  x  ->  ( A  ^o  ( B  +o  x
) )  =  U_ y  e.  x  ( A  ^o  ( B  +o  y ) ) )
81 iuneq2 4298 . . . . 5  |-  ( A. y  e.  x  ( A  ^o  ( B  +o  y ) )  =  ( ( A  ^o  B )  .o  ( A  ^o  y ) )  ->  U_ y  e.  x  ( A  ^o  ( B  +o  y ) )  =  U_ y  e.  x  ( ( A  ^o  B )  .o  ( A  ^o  y
) ) )
8280, 81sylan9eq 2507 . . . 4  |-  ( ( Lim  x  /\  A. y  e.  x  ( A  ^o  ( B  +o  y ) )  =  ( ( A  ^o  B )  .o  ( A  ^o  y ) ) )  ->  ( A  ^o  ( B  +o  x
) )  =  U_ y  e.  x  (
( A  ^o  B
)  .o  ( A  ^o  y ) ) )
83 oelim 7241 . . . . . . . . . 10  |-  ( ( ( A  e.  On  /\  ( x  e.  _V  /\ 
Lim  x ) )  /\  (/)  e.  A )  ->  ( A  ^o  x )  =  U_ y  e.  x  ( A  ^o  y ) )
8469, 83mpan2 678 . . . . . . . . 9  |-  ( ( A  e.  On  /\  ( x  e.  _V  /\ 
Lim  x ) )  ->  ( A  ^o  x )  =  U_ y  e.  x  ( A  ^o  y ) )
8521, 84mpan 677 . . . . . . . 8  |-  ( ( x  e.  _V  /\  Lim  x )  ->  ( A  ^o  x )  = 
U_ y  e.  x  ( A  ^o  y
) )
8654, 85mpan 677 . . . . . . 7  |-  ( Lim  x  ->  ( A  ^o  x )  =  U_ y  e.  x  ( A  ^o  y ) )
8786oveq2d 6311 . . . . . 6  |-  ( Lim  x  ->  ( ( A  ^o  B )  .o  ( A  ^o  x
) )  =  ( ( A  ^o  B
)  .o  U_ y  e.  x  ( A  ^o  y ) ) )
8821, 62, 43sylancr 670 . . . . . . . 8  |-  ( ( Lim  x  /\  y  e.  x )  ->  ( A  ^o  y )  e.  On )
8988ralrimiva 2804 . . . . . . 7  |-  ( Lim  x  ->  A. y  e.  x  ( A  ^o  y )  e.  On )
90 omlim 7240 . . . . . . . . . 10  |-  ( ( ( A  ^o  B
)  e.  On  /\  ( w  e.  _V  /\ 
Lim  w ) )  ->  ( ( A  ^o  B )  .o  w )  =  U_ z  e.  w  (
( A  ^o  B
)  .o  z ) )
9124, 90mpan 677 . . . . . . . . 9  |-  ( ( w  e.  _V  /\  Lim  w )  ->  (
( A  ^o  B
)  .o  w )  =  U_ z  e.  w  ( ( A  ^o  B )  .o  z ) )
9268, 91mpan 677 . . . . . . . 8  |-  ( Lim  w  ->  ( ( A  ^o  B )  .o  w )  =  U_ z  e.  w  (
( A  ^o  B
)  .o  z ) )
93 omwordi 7277 . . . . . . . . . 10  |-  ( ( z  e.  On  /\  w  e.  On  /\  ( A  ^o  B )  e.  On )  ->  (
z  C_  w  ->  ( ( A  ^o  B
)  .o  z ) 
C_  ( ( A  ^o  B )  .o  w ) ) )
9424, 93mp3an3 1355 . . . . . . . . 9  |-  ( ( z  e.  On  /\  w  e.  On )  ->  ( z  C_  w  ->  ( ( A  ^o  B )  .o  z
)  C_  ( ( A  ^o  B )  .o  w ) ) )
95943impia 1206 . . . . . . . 8  |-  ( ( z  e.  On  /\  w  e.  On  /\  z  C_  w )  ->  (
( A  ^o  B
)  .o  z ) 
C_  ( ( A  ^o  B )  .o  w ) )
9692, 95onoviun 7067 . . . . . . 7  |-  ( ( x  e.  _V  /\  A. y  e.  x  ( A  ^o  y )  e.  On  /\  x  =/=  (/) )  ->  (
( A  ^o  B
)  .o  U_ y  e.  x  ( A  ^o  y ) )  = 
U_ y  e.  x  ( ( A  ^o  B )  .o  ( A  ^o  y ) ) )
9759, 89, 67, 96syl3anc 1269 . . . . . 6  |-  ( Lim  x  ->  ( ( A  ^o  B )  .o 
U_ y  e.  x  ( A  ^o  y
) )  =  U_ y  e.  x  (
( A  ^o  B
)  .o  ( A  ^o  y ) ) )
9887, 97eqtrd 2487 . . . . 5  |-  ( Lim  x  ->  ( ( A  ^o  B )  .o  ( A  ^o  x
) )  =  U_ y  e.  x  (
( A  ^o  B
)  .o  ( A  ^o  y ) ) )
9998adantr 467 . . . 4  |-  ( ( Lim  x  /\  A. y  e.  x  ( A  ^o  ( B  +o  y ) )  =  ( ( A  ^o  B )  .o  ( A  ^o  y ) ) )  ->  ( ( A  ^o  B )  .o  ( A  ^o  x
) )  =  U_ y  e.  x  (
( A  ^o  B
)  .o  ( A  ^o  y ) ) )
10082, 99eqtr4d 2490 . . 3  |-  ( ( Lim  x  /\  A. y  e.  x  ( A  ^o  ( B  +o  y ) )  =  ( ( A  ^o  B )  .o  ( A  ^o  y ) ) )  ->  ( A  ^o  ( B  +o  x
) )  =  ( ( A  ^o  B
)  .o  ( A  ^o  x ) ) )
101100ex 436 . 2  |-  ( Lim  x  ->  ( A. y  e.  x  ( A  ^o  ( B  +o  y ) )  =  ( ( A  ^o  B )  .o  ( A  ^o  y ) )  ->  ( A  ^o  ( B  +o  x
) )  =  ( ( A  ^o  B
)  .o  ( A  ^o  x ) ) ) )
1025, 10, 15, 20, 33, 53, 101tfinds 6691 1  |-  ( C  e.  On  ->  ( A  ^o  ( B  +o  C ) )  =  ( ( A  ^o  B )  .o  ( A  ^o  C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371    /\ w3a 986    = wceq 1446    e. wcel 1889    =/= wne 2624   A.wral 2739   _Vcvv 3047    C_ wss 3406   (/)c0 3733   U_ciun 4281   Ord word 5425   Oncon0 5426   Lim wlim 5427   suc csuc 5428  (class class class)co 6295   1oc1o 7180    +o coa 7184    .o comu 7185    ^o coe 7186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1671  ax-4 1684  ax-5 1760  ax-6 1807  ax-7 1853  ax-8 1891  ax-9 1898  ax-10 1917  ax-11 1922  ax-12 1935  ax-13 2093  ax-ext 2433  ax-rep 4518  ax-sep 4528  ax-nul 4537  ax-pow 4584  ax-pr 4642  ax-un 6588
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 987  df-3an 988  df-tru 1449  df-ex 1666  df-nf 1670  df-sb 1800  df-eu 2305  df-mo 2306  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2583  df-ne 2626  df-ral 2744  df-rex 2745  df-reu 2746  df-rmo 2747  df-rab 2748  df-v 3049  df-sbc 3270  df-csb 3366  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-pss 3422  df-nul 3734  df-if 3884  df-pw 3955  df-sn 3971  df-pr 3973  df-tp 3975  df-op 3977  df-uni 4202  df-int 4238  df-iun 4283  df-br 4406  df-opab 4465  df-mpt 4466  df-tr 4501  df-eprel 4748  df-id 4752  df-po 4758  df-so 4759  df-fr 4796  df-we 4798  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-pred 5383  df-ord 5429  df-on 5430  df-lim 5431  df-suc 5432  df-iota 5549  df-fun 5587  df-fn 5588  df-f 5589  df-f1 5590  df-fo 5591  df-f1o 5592  df-fv 5593  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6698  df-1st 6798  df-2nd 6799  df-wrecs 7033  df-recs 7095  df-rdg 7133  df-1o 7187  df-2o 7188  df-oadd 7191  df-omul 7192  df-oexp 7193
This theorem is referenced by:  oeoa  7303
  Copyright terms: Public domain W3C validator