MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeoa Unicode version

Theorem oeoa 6799
Description: Sum of exponents law for ordinal exponentiation. Theorem 8R of [Enderton] p. 238. Also Proposition 8.41 of [TakeutiZaring] p. 69. (Contributed by Eric Schmidt, 26-May-2009.)
Assertion
Ref Expression
oeoa  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( A  ^o  ( B  +o  C ) )  =  ( ( A  ^o  B )  .o  ( A  ^o  C ) ) )

Proof of Theorem oeoa
StepHypRef Expression
1 oa00 6761 . . . . . . . . 9  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( ( B  +o  C )  =  (/)  <->  ( B  =  (/)  /\  C  =  (/) ) ) )
21biimpar 472 . . . . . . . 8  |-  ( ( ( B  e.  On  /\  C  e.  On )  /\  ( B  =  (/)  /\  C  =  (/) ) )  ->  ( B  +o  C )  =  (/) )
32oveq2d 6056 . . . . . . 7  |-  ( ( ( B  e.  On  /\  C  e.  On )  /\  ( B  =  (/)  /\  C  =  (/) ) )  ->  ( (/) 
^o  ( B  +o  C ) )  =  ( (/)  ^o  (/) ) )
4 oveq2 6048 . . . . . . . . . 10  |-  ( B  =  (/)  ->  ( (/)  ^o  B )  =  (
(/)  ^o  (/) ) )
5 oveq2 6048 . . . . . . . . . . 11  |-  ( C  =  (/)  ->  ( (/)  ^o  C )  =  (
(/)  ^o  (/) ) )
6 oe0m0 6723 . . . . . . . . . . 11  |-  ( (/)  ^o  (/) )  =  1o
75, 6syl6eq 2452 . . . . . . . . . 10  |-  ( C  =  (/)  ->  ( (/)  ^o  C )  =  1o )
84, 7oveqan12d 6059 . . . . . . . . 9  |-  ( ( B  =  (/)  /\  C  =  (/) )  ->  (
( (/)  ^o  B )  .o  ( (/)  ^o  C
) )  =  ( ( (/)  ^o  (/) )  .o  1o ) )
9 0elon 4594 . . . . . . . . . . 11  |-  (/)  e.  On
10 oecl 6740 . . . . . . . . . . 11  |-  ( (
(/)  e.  On  /\  (/)  e.  On )  ->  ( (/)  ^o  (/) )  e.  On )
119, 9, 10mp2an 654 . . . . . . . . . 10  |-  ( (/)  ^o  (/) )  e.  On
12 om1 6744 . . . . . . . . . 10  |-  ( (
(/)  ^o  (/) )  e.  On  ->  ( ( (/) 
^o  (/) )  .o  1o )  =  ( (/)  ^o  (/) ) )
1311, 12ax-mp 8 . . . . . . . . 9  |-  ( (
(/)  ^o  (/) )  .o  1o )  =  (
(/)  ^o  (/) )
148, 13syl6eq 2452 . . . . . . . 8  |-  ( ( B  =  (/)  /\  C  =  (/) )  ->  (
( (/)  ^o  B )  .o  ( (/)  ^o  C
) )  =  (
(/)  ^o  (/) ) )
1514adantl 453 . . . . . . 7  |-  ( ( ( B  e.  On  /\  C  e.  On )  /\  ( B  =  (/)  /\  C  =  (/) ) )  ->  (
( (/)  ^o  B )  .o  ( (/)  ^o  C
) )  =  (
(/)  ^o  (/) ) )
163, 15eqtr4d 2439 . . . . . 6  |-  ( ( ( B  e.  On  /\  C  e.  On )  /\  ( B  =  (/)  /\  C  =  (/) ) )  ->  ( (/) 
^o  ( B  +o  C ) )  =  ( ( (/)  ^o  B
)  .o  ( (/)  ^o  C ) ) )
17 oacl 6738 . . . . . . . . . 10  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( B  +o  C
)  e.  On )
18 on0eln0 4596 . . . . . . . . . 10  |-  ( ( B  +o  C )  e.  On  ->  ( (/) 
e.  ( B  +o  C )  <->  ( B  +o  C )  =/=  (/) ) )
1917, 18syl 16 . . . . . . . . 9  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( (/)  e.  ( B  +o  C )  <->  ( B  +o  C )  =/=  (/) ) )
20 oe0m1 6724 . . . . . . . . . 10  |-  ( ( B  +o  C )  e.  On  ->  ( (/) 
e.  ( B  +o  C )  <->  ( (/)  ^o  ( B  +o  C ) )  =  (/) ) )
2117, 20syl 16 . . . . . . . . 9  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( (/)  e.  ( B  +o  C )  <->  ( (/)  ^o  ( B  +o  C ) )  =  (/) ) )
221necon3abid 2600 . . . . . . . . 9  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( ( B  +o  C )  =/=  (/)  <->  -.  ( B  =  (/)  /\  C  =  (/) ) ) )
2319, 21, 223bitr3d 275 . . . . . . . 8  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( ( (/)  ^o  ( B  +o  C ) )  =  (/)  <->  -.  ( B  =  (/)  /\  C  =  (/) ) ) )
2423biimpar 472 . . . . . . 7  |-  ( ( ( B  e.  On  /\  C  e.  On )  /\  -.  ( B  =  (/)  /\  C  =  (/) ) )  ->  ( (/) 
^o  ( B  +o  C ) )  =  (/) )
25 on0eln0 4596 . . . . . . . . . . . 12  |-  ( B  e.  On  ->  ( (/) 
e.  B  <->  B  =/=  (/) ) )
2625adantr 452 . . . . . . . . . . 11  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( (/)  e.  B  <->  B  =/=  (/) ) )
27 on0eln0 4596 . . . . . . . . . . . 12  |-  ( C  e.  On  ->  ( (/) 
e.  C  <->  C  =/=  (/) ) )
2827adantl 453 . . . . . . . . . . 11  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( (/)  e.  C  <->  C  =/=  (/) ) )
2926, 28orbi12d 691 . . . . . . . . . 10  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( ( (/)  e.  B  \/  (/)  e.  C )  <-> 
( B  =/=  (/)  \/  C  =/=  (/) ) ) )
30 neorian 2654 . . . . . . . . . 10  |-  ( ( B  =/=  (/)  \/  C  =/=  (/) )  <->  -.  ( B  =  (/)  /\  C  =  (/) ) )
3129, 30syl6bb 253 . . . . . . . . 9  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( ( (/)  e.  B  \/  (/)  e.  C )  <->  -.  ( B  =  (/)  /\  C  =  (/) ) ) )
32 oe0m1 6724 . . . . . . . . . . . . . . 15  |-  ( B  e.  On  ->  ( (/) 
e.  B  <->  ( (/)  ^o  B
)  =  (/) ) )
3332biimpa 471 . . . . . . . . . . . . . 14  |-  ( ( B  e.  On  /\  (/) 
e.  B )  -> 
( (/)  ^o  B )  =  (/) )
3433oveq1d 6055 . . . . . . . . . . . . 13  |-  ( ( B  e.  On  /\  (/) 
e.  B )  -> 
( ( (/)  ^o  B
)  .o  ( (/)  ^o  C ) )  =  ( (/)  .o  ( (/) 
^o  C ) ) )
35 oecl 6740 . . . . . . . . . . . . . . 15  |-  ( (
(/)  e.  On  /\  C  e.  On )  ->  ( (/) 
^o  C )  e.  On )
369, 35mpan 652 . . . . . . . . . . . . . 14  |-  ( C  e.  On  ->  ( (/) 
^o  C )  e.  On )
37 om0r 6742 . . . . . . . . . . . . . 14  |-  ( (
(/)  ^o  C )  e.  On  ->  ( (/)  .o  ( (/) 
^o  C ) )  =  (/) )
3836, 37syl 16 . . . . . . . . . . . . 13  |-  ( C  e.  On  ->  ( (/) 
.o  ( (/)  ^o  C
) )  =  (/) )
3934, 38sylan9eq 2456 . . . . . . . . . . . 12  |-  ( ( ( B  e.  On  /\  (/)  e.  B )  /\  C  e.  On )  ->  ( ( (/)  ^o  B
)  .o  ( (/)  ^o  C ) )  =  (/) )
4039an32s 780 . . . . . . . . . . 11  |-  ( ( ( B  e.  On  /\  C  e.  On )  /\  (/)  e.  B )  ->  ( ( (/)  ^o  B )  .o  ( (/) 
^o  C ) )  =  (/) )
41 oe0m1 6724 . . . . . . . . . . . . . . 15  |-  ( C  e.  On  ->  ( (/) 
e.  C  <->  ( (/)  ^o  C
)  =  (/) ) )
4241biimpa 471 . . . . . . . . . . . . . 14  |-  ( ( C  e.  On  /\  (/) 
e.  C )  -> 
( (/)  ^o  C )  =  (/) )
4342oveq2d 6056 . . . . . . . . . . . . 13  |-  ( ( C  e.  On  /\  (/) 
e.  C )  -> 
( ( (/)  ^o  B
)  .o  ( (/)  ^o  C ) )  =  ( ( (/)  ^o  B
)  .o  (/) ) )
44 oecl 6740 . . . . . . . . . . . . . . 15  |-  ( (
(/)  e.  On  /\  B  e.  On )  ->  ( (/) 
^o  B )  e.  On )
459, 44mpan 652 . . . . . . . . . . . . . 14  |-  ( B  e.  On  ->  ( (/) 
^o  B )  e.  On )
46 om0 6720 . . . . . . . . . . . . . 14  |-  ( (
(/)  ^o  B )  e.  On  ->  ( ( (/) 
^o  B )  .o  (/) )  =  (/) )
4745, 46syl 16 . . . . . . . . . . . . 13  |-  ( B  e.  On  ->  (
( (/)  ^o  B )  .o  (/) )  =  (/) )
4843, 47sylan9eqr 2458 . . . . . . . . . . . 12  |-  ( ( B  e.  On  /\  ( C  e.  On  /\  (/)  e.  C ) )  ->  ( ( (/)  ^o  B )  .o  ( (/) 
^o  C ) )  =  (/) )
4948anassrs 630 . . . . . . . . . . 11  |-  ( ( ( B  e.  On  /\  C  e.  On )  /\  (/)  e.  C )  ->  ( ( (/)  ^o  B )  .o  ( (/) 
^o  C ) )  =  (/) )
5040, 49jaodan 761 . . . . . . . . . 10  |-  ( ( ( B  e.  On  /\  C  e.  On )  /\  ( (/)  e.  B  \/  (/)  e.  C ) )  ->  ( ( (/) 
^o  B )  .o  ( (/)  ^o  C ) )  =  (/) )
5150ex 424 . . . . . . . . 9  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( ( (/)  e.  B  \/  (/)  e.  C )  ->  ( ( (/)  ^o  B )  .o  ( (/) 
^o  C ) )  =  (/) ) )
5231, 51sylbird 227 . . . . . . . 8  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( -.  ( B  =  (/)  /\  C  =  (/) )  ->  ( (
(/)  ^o  B )  .o  ( (/)  ^o  C ) )  =  (/) ) )
5352imp 419 . . . . . . 7  |-  ( ( ( B  e.  On  /\  C  e.  On )  /\  -.  ( B  =  (/)  /\  C  =  (/) ) )  ->  (
( (/)  ^o  B )  .o  ( (/)  ^o  C
) )  =  (/) )
5424, 53eqtr4d 2439 . . . . . 6  |-  ( ( ( B  e.  On  /\  C  e.  On )  /\  -.  ( B  =  (/)  /\  C  =  (/) ) )  ->  ( (/) 
^o  ( B  +o  C ) )  =  ( ( (/)  ^o  B
)  .o  ( (/)  ^o  C ) ) )
5516, 54pm2.61dan 767 . . . . 5  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( (/)  ^o  ( B  +o  C ) )  =  ( ( (/)  ^o  B )  .o  ( (/) 
^o  C ) ) )
56 oveq1 6047 . . . . . 6  |-  ( A  =  (/)  ->  ( A  ^o  ( B  +o  C ) )  =  ( (/)  ^o  ( B  +o  C ) ) )
57 oveq1 6047 . . . . . . 7  |-  ( A  =  (/)  ->  ( A  ^o  B )  =  ( (/)  ^o  B ) )
58 oveq1 6047 . . . . . . 7  |-  ( A  =  (/)  ->  ( A  ^o  C )  =  ( (/)  ^o  C ) )
5957, 58oveq12d 6058 . . . . . 6  |-  ( A  =  (/)  ->  ( ( A  ^o  B )  .o  ( A  ^o  C ) )  =  ( ( (/)  ^o  B
)  .o  ( (/)  ^o  C ) ) )
6056, 59eqeq12d 2418 . . . . 5  |-  ( A  =  (/)  ->  ( ( A  ^o  ( B  +o  C ) )  =  ( ( A  ^o  B )  .o  ( A  ^o  C
) )  <->  ( (/)  ^o  ( B  +o  C ) )  =  ( ( (/)  ^o  B )  .o  ( (/) 
^o  C ) ) ) )
6155, 60syl5ibr 213 . . . 4  |-  ( A  =  (/)  ->  ( ( B  e.  On  /\  C  e.  On )  ->  ( A  ^o  ( B  +o  C ) )  =  ( ( A  ^o  B )  .o  ( A  ^o  C
) ) ) )
6261impcom 420 . . 3  |-  ( ( ( B  e.  On  /\  C  e.  On )  /\  A  =  (/) )  ->  ( A  ^o  ( B  +o  C
) )  =  ( ( A  ^o  B
)  .o  ( A  ^o  C ) ) )
63 oveq1 6047 . . . . . . . 8  |-  ( A  =  if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ->  ( A  ^o  ( B  +o  C
) )  =  ( if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o )  ^o  ( B  +o  C ) ) )
64 oveq1 6047 . . . . . . . . 9  |-  ( A  =  if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ->  ( A  ^o  B )  =  ( if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o )  ^o  B ) )
65 oveq1 6047 . . . . . . . . 9  |-  ( A  =  if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ->  ( A  ^o  C )  =  ( if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o )  ^o  C ) )
6664, 65oveq12d 6058 . . . . . . . 8  |-  ( A  =  if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ->  ( ( A  ^o  B )  .o  ( A  ^o  C
) )  =  ( ( if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ^o  B )  .o  ( if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ^o  C ) ) )
6763, 66eqeq12d 2418 . . . . . . 7  |-  ( A  =  if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ->  ( ( A  ^o  ( B  +o  C ) )  =  ( ( A  ^o  B )  .o  ( A  ^o  C ) )  <-> 
( if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ^o  ( B  +o  C ) )  =  ( ( if ( ( A  e.  On  /\  (/)  e.  A ) ,  A ,  1o )  ^o  B )  .o  ( if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ^o  C ) ) ) )
6867imbi2d 308 . . . . . 6  |-  ( A  =  if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ->  ( ( C  e.  On  ->  ( A  ^o  ( B  +o  C ) )  =  ( ( A  ^o  B )  .o  ( A  ^o  C ) ) )  <->  ( C  e.  On  ->  ( if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o )  ^o  ( B  +o  C ) )  =  ( ( if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o )  ^o  B )  .o  ( if ( ( A  e.  On  /\  (/)  e.  A ) ,  A ,  1o )  ^o  C ) ) ) ) )
69 oveq1 6047 . . . . . . . . 9  |-  ( B  =  if ( B  e.  On ,  B ,  1o )  ->  ( B  +o  C )  =  ( if ( B  e.  On ,  B ,  1o )  +o  C
) )
7069oveq2d 6056 . . . . . . . 8  |-  ( B  =  if ( B  e.  On ,  B ,  1o )  ->  ( if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o )  ^o  ( B  +o  C ) )  =  ( if ( ( A  e.  On  /\  (/)  e.  A ) ,  A ,  1o )  ^o  ( if ( B  e.  On ,  B ,  1o )  +o  C ) ) )
71 oveq2 6048 . . . . . . . . 9  |-  ( B  =  if ( B  e.  On ,  B ,  1o )  ->  ( if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o )  ^o  B )  =  ( if ( ( A  e.  On  /\  (/)  e.  A ) ,  A ,  1o )  ^o  if ( B  e.  On ,  B ,  1o ) ) )
7271oveq1d 6055 . . . . . . . 8  |-  ( B  =  if ( B  e.  On ,  B ,  1o )  ->  (
( if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ^o  B )  .o  ( if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ^o  C ) )  =  ( ( if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o )  ^o  if ( B  e.  On ,  B ,  1o )
)  .o  ( if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o )  ^o  C ) ) )
7370, 72eqeq12d 2418 . . . . . . 7  |-  ( B  =  if ( B  e.  On ,  B ,  1o )  ->  (
( if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ^o  ( B  +o  C ) )  =  ( ( if ( ( A  e.  On  /\  (/)  e.  A ) ,  A ,  1o )  ^o  B )  .o  ( if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ^o  C ) )  <-> 
( if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ^o  ( if ( B  e.  On ,  B ,  1o )  +o  C ) )  =  ( ( if ( ( A  e.  On  /\  (/)  e.  A ) ,  A ,  1o )  ^o  if ( B  e.  On ,  B ,  1o ) )  .o  ( if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ^o  C ) ) ) )
7473imbi2d 308 . . . . . 6  |-  ( B  =  if ( B  e.  On ,  B ,  1o )  ->  (
( C  e.  On  ->  ( if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ^o  ( B  +o  C ) )  =  ( ( if ( ( A  e.  On  /\  (/)  e.  A ) ,  A ,  1o )  ^o  B )  .o  ( if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ^o  C ) ) )  <->  ( C  e.  On  ->  ( if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o )  ^o  ( if ( B  e.  On ,  B ,  1o )  +o  C ) )  =  ( ( if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o )  ^o  if ( B  e.  On ,  B ,  1o )
)  .o  ( if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o )  ^o  C ) ) ) ) )
75 eleq1 2464 . . . . . . . . . 10  |-  ( A  =  if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ->  ( A  e.  On  <->  if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o )  e.  On ) )
76 eleq2 2465 . . . . . . . . . 10  |-  ( A  =  if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ->  ( (/)  e.  A  <->  (/)  e.  if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o ) ) )
7775, 76anbi12d 692 . . . . . . . . 9  |-  ( A  =  if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ->  ( ( A  e.  On  /\  (/)  e.  A
)  <->  ( if ( ( A  e.  On  /\  (/)  e.  A ) ,  A ,  1o )  e.  On  /\  (/)  e.  if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o ) ) ) )
78 eleq1 2464 . . . . . . . . . 10  |-  ( 1o  =  if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ->  ( 1o  e.  On 
<->  if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o )  e.  On ) )
79 eleq2 2465 . . . . . . . . . 10  |-  ( 1o  =  if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ->  ( (/)  e.  1o  <->  (/)  e.  if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o ) ) )
8078, 79anbi12d 692 . . . . . . . . 9  |-  ( 1o  =  if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ->  ( ( 1o  e.  On  /\  (/)  e.  1o ) 
<->  ( if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  e.  On  /\  (/)  e.  if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o ) ) ) )
81 1on 6690 . . . . . . . . . 10  |-  1o  e.  On
82 0lt1o 6707 . . . . . . . . . 10  |-  (/)  e.  1o
8381, 82pm3.2i 442 . . . . . . . . 9  |-  ( 1o  e.  On  /\  (/)  e.  1o )
8477, 80, 83elimhyp 3747 . . . . . . . 8  |-  ( if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o )  e.  On  /\  (/)  e.  if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o ) )
8584simpli 445 . . . . . . 7  |-  if ( ( A  e.  On  /\  (/)  e.  A ) ,  A ,  1o )  e.  On
8684simpri 449 . . . . . . 7  |-  (/)  e.  if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o )
8781elimel 3751 . . . . . . 7  |-  if ( B  e.  On ,  B ,  1o )  e.  On
8885, 86, 87oeoalem 6798 . . . . . 6  |-  ( C  e.  On  ->  ( if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o )  ^o  ( if ( B  e.  On ,  B ,  1o )  +o  C ) )  =  ( ( if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o )  ^o  if ( B  e.  On ,  B ,  1o )
)  .o  ( if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o )  ^o  C ) ) )
8968, 74, 88dedth2h 3741 . . . . 5  |-  ( ( ( A  e.  On  /\  (/)  e.  A )  /\  B  e.  On )  ->  ( C  e.  On  ->  ( A  ^o  ( B  +o  C ) )  =  ( ( A  ^o  B )  .o  ( A  ^o  C
) ) ) )
9089impr 603 . . . 4  |-  ( ( ( A  e.  On  /\  (/)  e.  A )  /\  ( B  e.  On  /\  C  e.  On ) )  ->  ( A  ^o  ( B  +o  C
) )  =  ( ( A  ^o  B
)  .o  ( A  ^o  C ) ) )
9190an32s 780 . . 3  |-  ( ( ( A  e.  On  /\  ( B  e.  On  /\  C  e.  On ) )  /\  (/)  e.  A
)  ->  ( A  ^o  ( B  +o  C
) )  =  ( ( A  ^o  B
)  .o  ( A  ^o  C ) ) )
9262, 91oe0lem 6716 . 2  |-  ( ( A  e.  On  /\  ( B  e.  On  /\  C  e.  On ) )  ->  ( A  ^o  ( B  +o  C
) )  =  ( ( A  ^o  B
)  .o  ( A  ^o  C ) ) )
93923impb 1149 1  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( A  ^o  ( B  +o  C ) )  =  ( ( A  ^o  B )  .o  ( A  ^o  C ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2567   (/)c0 3588   ifcif 3699   Oncon0 4541  (class class class)co 6040   1oc1o 6676    +o coa 6680    .o comu 6681    ^o coe 6682
This theorem is referenced by:  oeoelem  6800  infxpenc  7855
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-omul 6688  df-oexp 6689
  Copyright terms: Public domain W3C validator