MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeoa Structured version   Unicode version

Theorem oeoa 7247
Description: Sum of exponents law for ordinal exponentiation. Theorem 8R of [Enderton] p. 238. Also Proposition 8.41 of [TakeutiZaring] p. 69. (Contributed by Eric Schmidt, 26-May-2009.)
Assertion
Ref Expression
oeoa  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( A  ^o  ( B  +o  C ) )  =  ( ( A  ^o  B )  .o  ( A  ^o  C ) ) )

Proof of Theorem oeoa
StepHypRef Expression
1 oa00 7209 . . . . . . . . 9  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( ( B  +o  C )  =  (/)  <->  ( B  =  (/)  /\  C  =  (/) ) ) )
21biimpar 485 . . . . . . . 8  |-  ( ( ( B  e.  On  /\  C  e.  On )  /\  ( B  =  (/)  /\  C  =  (/) ) )  ->  ( B  +o  C )  =  (/) )
32oveq2d 6301 . . . . . . 7  |-  ( ( ( B  e.  On  /\  C  e.  On )  /\  ( B  =  (/)  /\  C  =  (/) ) )  ->  ( (/) 
^o  ( B  +o  C ) )  =  ( (/)  ^o  (/) ) )
4 oveq2 6293 . . . . . . . . . 10  |-  ( B  =  (/)  ->  ( (/)  ^o  B )  =  (
(/)  ^o  (/) ) )
5 oveq2 6293 . . . . . . . . . . 11  |-  ( C  =  (/)  ->  ( (/)  ^o  C )  =  (
(/)  ^o  (/) ) )
6 oe0m0 7171 . . . . . . . . . . 11  |-  ( (/)  ^o  (/) )  =  1o
75, 6syl6eq 2524 . . . . . . . . . 10  |-  ( C  =  (/)  ->  ( (/)  ^o  C )  =  1o )
84, 7oveqan12d 6304 . . . . . . . . 9  |-  ( ( B  =  (/)  /\  C  =  (/) )  ->  (
( (/)  ^o  B )  .o  ( (/)  ^o  C
) )  =  ( ( (/)  ^o  (/) )  .o  1o ) )
9 0elon 4931 . . . . . . . . . . 11  |-  (/)  e.  On
10 oecl 7188 . . . . . . . . . . 11  |-  ( (
(/)  e.  On  /\  (/)  e.  On )  ->  ( (/)  ^o  (/) )  e.  On )
119, 9, 10mp2an 672 . . . . . . . . . 10  |-  ( (/)  ^o  (/) )  e.  On
12 om1 7192 . . . . . . . . . 10  |-  ( (
(/)  ^o  (/) )  e.  On  ->  ( ( (/) 
^o  (/) )  .o  1o )  =  ( (/)  ^o  (/) ) )
1311, 12ax-mp 5 . . . . . . . . 9  |-  ( (
(/)  ^o  (/) )  .o  1o )  =  (
(/)  ^o  (/) )
148, 13syl6eq 2524 . . . . . . . 8  |-  ( ( B  =  (/)  /\  C  =  (/) )  ->  (
( (/)  ^o  B )  .o  ( (/)  ^o  C
) )  =  (
(/)  ^o  (/) ) )
1514adantl 466 . . . . . . 7  |-  ( ( ( B  e.  On  /\  C  e.  On )  /\  ( B  =  (/)  /\  C  =  (/) ) )  ->  (
( (/)  ^o  B )  .o  ( (/)  ^o  C
) )  =  (
(/)  ^o  (/) ) )
163, 15eqtr4d 2511 . . . . . 6  |-  ( ( ( B  e.  On  /\  C  e.  On )  /\  ( B  =  (/)  /\  C  =  (/) ) )  ->  ( (/) 
^o  ( B  +o  C ) )  =  ( ( (/)  ^o  B
)  .o  ( (/)  ^o  C ) ) )
17 oacl 7186 . . . . . . . . . 10  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( B  +o  C
)  e.  On )
18 on0eln0 4933 . . . . . . . . . 10  |-  ( ( B  +o  C )  e.  On  ->  ( (/) 
e.  ( B  +o  C )  <->  ( B  +o  C )  =/=  (/) ) )
1917, 18syl 16 . . . . . . . . 9  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( (/)  e.  ( B  +o  C )  <->  ( B  +o  C )  =/=  (/) ) )
20 oe0m1 7172 . . . . . . . . . 10  |-  ( ( B  +o  C )  e.  On  ->  ( (/) 
e.  ( B  +o  C )  <->  ( (/)  ^o  ( B  +o  C ) )  =  (/) ) )
2117, 20syl 16 . . . . . . . . 9  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( (/)  e.  ( B  +o  C )  <->  ( (/)  ^o  ( B  +o  C ) )  =  (/) ) )
221necon3abid 2713 . . . . . . . . 9  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( ( B  +o  C )  =/=  (/)  <->  -.  ( B  =  (/)  /\  C  =  (/) ) ) )
2319, 21, 223bitr3d 283 . . . . . . . 8  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( ( (/)  ^o  ( B  +o  C ) )  =  (/)  <->  -.  ( B  =  (/)  /\  C  =  (/) ) ) )
2423biimpar 485 . . . . . . 7  |-  ( ( ( B  e.  On  /\  C  e.  On )  /\  -.  ( B  =  (/)  /\  C  =  (/) ) )  ->  ( (/) 
^o  ( B  +o  C ) )  =  (/) )
25 on0eln0 4933 . . . . . . . . . . . 12  |-  ( B  e.  On  ->  ( (/) 
e.  B  <->  B  =/=  (/) ) )
2625adantr 465 . . . . . . . . . . 11  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( (/)  e.  B  <->  B  =/=  (/) ) )
27 on0eln0 4933 . . . . . . . . . . . 12  |-  ( C  e.  On  ->  ( (/) 
e.  C  <->  C  =/=  (/) ) )
2827adantl 466 . . . . . . . . . . 11  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( (/)  e.  C  <->  C  =/=  (/) ) )
2926, 28orbi12d 709 . . . . . . . . . 10  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( ( (/)  e.  B  \/  (/)  e.  C )  <-> 
( B  =/=  (/)  \/  C  =/=  (/) ) ) )
30 neorian 2794 . . . . . . . . . 10  |-  ( ( B  =/=  (/)  \/  C  =/=  (/) )  <->  -.  ( B  =  (/)  /\  C  =  (/) ) )
3129, 30syl6bb 261 . . . . . . . . 9  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( ( (/)  e.  B  \/  (/)  e.  C )  <->  -.  ( B  =  (/)  /\  C  =  (/) ) ) )
32 oe0m1 7172 . . . . . . . . . . . . . . 15  |-  ( B  e.  On  ->  ( (/) 
e.  B  <->  ( (/)  ^o  B
)  =  (/) ) )
3332biimpa 484 . . . . . . . . . . . . . 14  |-  ( ( B  e.  On  /\  (/) 
e.  B )  -> 
( (/)  ^o  B )  =  (/) )
3433oveq1d 6300 . . . . . . . . . . . . 13  |-  ( ( B  e.  On  /\  (/) 
e.  B )  -> 
( ( (/)  ^o  B
)  .o  ( (/)  ^o  C ) )  =  ( (/)  .o  ( (/) 
^o  C ) ) )
35 oecl 7188 . . . . . . . . . . . . . . 15  |-  ( (
(/)  e.  On  /\  C  e.  On )  ->  ( (/) 
^o  C )  e.  On )
369, 35mpan 670 . . . . . . . . . . . . . 14  |-  ( C  e.  On  ->  ( (/) 
^o  C )  e.  On )
37 om0r 7190 . . . . . . . . . . . . . 14  |-  ( (
(/)  ^o  C )  e.  On  ->  ( (/)  .o  ( (/) 
^o  C ) )  =  (/) )
3836, 37syl 16 . . . . . . . . . . . . 13  |-  ( C  e.  On  ->  ( (/) 
.o  ( (/)  ^o  C
) )  =  (/) )
3934, 38sylan9eq 2528 . . . . . . . . . . . 12  |-  ( ( ( B  e.  On  /\  (/)  e.  B )  /\  C  e.  On )  ->  ( ( (/)  ^o  B
)  .o  ( (/)  ^o  C ) )  =  (/) )
4039an32s 802 . . . . . . . . . . 11  |-  ( ( ( B  e.  On  /\  C  e.  On )  /\  (/)  e.  B )  ->  ( ( (/)  ^o  B )  .o  ( (/) 
^o  C ) )  =  (/) )
41 oe0m1 7172 . . . . . . . . . . . . . . 15  |-  ( C  e.  On  ->  ( (/) 
e.  C  <->  ( (/)  ^o  C
)  =  (/) ) )
4241biimpa 484 . . . . . . . . . . . . . 14  |-  ( ( C  e.  On  /\  (/) 
e.  C )  -> 
( (/)  ^o  C )  =  (/) )
4342oveq2d 6301 . . . . . . . . . . . . 13  |-  ( ( C  e.  On  /\  (/) 
e.  C )  -> 
( ( (/)  ^o  B
)  .o  ( (/)  ^o  C ) )  =  ( ( (/)  ^o  B
)  .o  (/) ) )
44 oecl 7188 . . . . . . . . . . . . . . 15  |-  ( (
(/)  e.  On  /\  B  e.  On )  ->  ( (/) 
^o  B )  e.  On )
459, 44mpan 670 . . . . . . . . . . . . . 14  |-  ( B  e.  On  ->  ( (/) 
^o  B )  e.  On )
46 om0 7168 . . . . . . . . . . . . . 14  |-  ( (
(/)  ^o  B )  e.  On  ->  ( ( (/) 
^o  B )  .o  (/) )  =  (/) )
4745, 46syl 16 . . . . . . . . . . . . 13  |-  ( B  e.  On  ->  (
( (/)  ^o  B )  .o  (/) )  =  (/) )
4843, 47sylan9eqr 2530 . . . . . . . . . . . 12  |-  ( ( B  e.  On  /\  ( C  e.  On  /\  (/)  e.  C ) )  ->  ( ( (/)  ^o  B )  .o  ( (/) 
^o  C ) )  =  (/) )
4948anassrs 648 . . . . . . . . . . 11  |-  ( ( ( B  e.  On  /\  C  e.  On )  /\  (/)  e.  C )  ->  ( ( (/)  ^o  B )  .o  ( (/) 
^o  C ) )  =  (/) )
5040, 49jaodan 783 . . . . . . . . . 10  |-  ( ( ( B  e.  On  /\  C  e.  On )  /\  ( (/)  e.  B  \/  (/)  e.  C ) )  ->  ( ( (/) 
^o  B )  .o  ( (/)  ^o  C ) )  =  (/) )
5150ex 434 . . . . . . . . 9  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( ( (/)  e.  B  \/  (/)  e.  C )  ->  ( ( (/)  ^o  B )  .o  ( (/) 
^o  C ) )  =  (/) ) )
5231, 51sylbird 235 . . . . . . . 8  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( -.  ( B  =  (/)  /\  C  =  (/) )  ->  ( (
(/)  ^o  B )  .o  ( (/)  ^o  C ) )  =  (/) ) )
5352imp 429 . . . . . . 7  |-  ( ( ( B  e.  On  /\  C  e.  On )  /\  -.  ( B  =  (/)  /\  C  =  (/) ) )  ->  (
( (/)  ^o  B )  .o  ( (/)  ^o  C
) )  =  (/) )
5424, 53eqtr4d 2511 . . . . . 6  |-  ( ( ( B  e.  On  /\  C  e.  On )  /\  -.  ( B  =  (/)  /\  C  =  (/) ) )  ->  ( (/) 
^o  ( B  +o  C ) )  =  ( ( (/)  ^o  B
)  .o  ( (/)  ^o  C ) ) )
5516, 54pm2.61dan 789 . . . . 5  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( (/)  ^o  ( B  +o  C ) )  =  ( ( (/)  ^o  B )  .o  ( (/) 
^o  C ) ) )
56 oveq1 6292 . . . . . 6  |-  ( A  =  (/)  ->  ( A  ^o  ( B  +o  C ) )  =  ( (/)  ^o  ( B  +o  C ) ) )
57 oveq1 6292 . . . . . . 7  |-  ( A  =  (/)  ->  ( A  ^o  B )  =  ( (/)  ^o  B ) )
58 oveq1 6292 . . . . . . 7  |-  ( A  =  (/)  ->  ( A  ^o  C )  =  ( (/)  ^o  C ) )
5957, 58oveq12d 6303 . . . . . 6  |-  ( A  =  (/)  ->  ( ( A  ^o  B )  .o  ( A  ^o  C ) )  =  ( ( (/)  ^o  B
)  .o  ( (/)  ^o  C ) ) )
6056, 59eqeq12d 2489 . . . . 5  |-  ( A  =  (/)  ->  ( ( A  ^o  ( B  +o  C ) )  =  ( ( A  ^o  B )  .o  ( A  ^o  C
) )  <->  ( (/)  ^o  ( B  +o  C ) )  =  ( ( (/)  ^o  B )  .o  ( (/) 
^o  C ) ) ) )
6155, 60syl5ibr 221 . . . 4  |-  ( A  =  (/)  ->  ( ( B  e.  On  /\  C  e.  On )  ->  ( A  ^o  ( B  +o  C ) )  =  ( ( A  ^o  B )  .o  ( A  ^o  C
) ) ) )
6261impcom 430 . . 3  |-  ( ( ( B  e.  On  /\  C  e.  On )  /\  A  =  (/) )  ->  ( A  ^o  ( B  +o  C
) )  =  ( ( A  ^o  B
)  .o  ( A  ^o  C ) ) )
63 oveq1 6292 . . . . . . . 8  |-  ( A  =  if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ->  ( A  ^o  ( B  +o  C
) )  =  ( if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o )  ^o  ( B  +o  C ) ) )
64 oveq1 6292 . . . . . . . . 9  |-  ( A  =  if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ->  ( A  ^o  B )  =  ( if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o )  ^o  B ) )
65 oveq1 6292 . . . . . . . . 9  |-  ( A  =  if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ->  ( A  ^o  C )  =  ( if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o )  ^o  C ) )
6664, 65oveq12d 6303 . . . . . . . 8  |-  ( A  =  if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ->  ( ( A  ^o  B )  .o  ( A  ^o  C
) )  =  ( ( if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ^o  B )  .o  ( if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ^o  C ) ) )
6763, 66eqeq12d 2489 . . . . . . 7  |-  ( A  =  if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ->  ( ( A  ^o  ( B  +o  C ) )  =  ( ( A  ^o  B )  .o  ( A  ^o  C ) )  <-> 
( if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ^o  ( B  +o  C ) )  =  ( ( if ( ( A  e.  On  /\  (/)  e.  A ) ,  A ,  1o )  ^o  B )  .o  ( if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ^o  C ) ) ) )
6867imbi2d 316 . . . . . 6  |-  ( A  =  if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ->  ( ( C  e.  On  ->  ( A  ^o  ( B  +o  C ) )  =  ( ( A  ^o  B )  .o  ( A  ^o  C ) ) )  <->  ( C  e.  On  ->  ( if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o )  ^o  ( B  +o  C ) )  =  ( ( if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o )  ^o  B )  .o  ( if ( ( A  e.  On  /\  (/)  e.  A ) ,  A ,  1o )  ^o  C ) ) ) ) )
69 oveq1 6292 . . . . . . . . 9  |-  ( B  =  if ( B  e.  On ,  B ,  1o )  ->  ( B  +o  C )  =  ( if ( B  e.  On ,  B ,  1o )  +o  C
) )
7069oveq2d 6301 . . . . . . . 8  |-  ( B  =  if ( B  e.  On ,  B ,  1o )  ->  ( if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o )  ^o  ( B  +o  C ) )  =  ( if ( ( A  e.  On  /\  (/)  e.  A ) ,  A ,  1o )  ^o  ( if ( B  e.  On ,  B ,  1o )  +o  C ) ) )
71 oveq2 6293 . . . . . . . . 9  |-  ( B  =  if ( B  e.  On ,  B ,  1o )  ->  ( if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o )  ^o  B )  =  ( if ( ( A  e.  On  /\  (/)  e.  A ) ,  A ,  1o )  ^o  if ( B  e.  On ,  B ,  1o ) ) )
7271oveq1d 6300 . . . . . . . 8  |-  ( B  =  if ( B  e.  On ,  B ,  1o )  ->  (
( if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ^o  B )  .o  ( if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ^o  C ) )  =  ( ( if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o )  ^o  if ( B  e.  On ,  B ,  1o )
)  .o  ( if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o )  ^o  C ) ) )
7370, 72eqeq12d 2489 . . . . . . 7  |-  ( B  =  if ( B  e.  On ,  B ,  1o )  ->  (
( if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ^o  ( B  +o  C ) )  =  ( ( if ( ( A  e.  On  /\  (/)  e.  A ) ,  A ,  1o )  ^o  B )  .o  ( if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ^o  C ) )  <-> 
( if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ^o  ( if ( B  e.  On ,  B ,  1o )  +o  C ) )  =  ( ( if ( ( A  e.  On  /\  (/)  e.  A ) ,  A ,  1o )  ^o  if ( B  e.  On ,  B ,  1o ) )  .o  ( if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ^o  C ) ) ) )
7473imbi2d 316 . . . . . 6  |-  ( B  =  if ( B  e.  On ,  B ,  1o )  ->  (
( C  e.  On  ->  ( if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ^o  ( B  +o  C ) )  =  ( ( if ( ( A  e.  On  /\  (/)  e.  A ) ,  A ,  1o )  ^o  B )  .o  ( if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ^o  C ) ) )  <->  ( C  e.  On  ->  ( if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o )  ^o  ( if ( B  e.  On ,  B ,  1o )  +o  C ) )  =  ( ( if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o )  ^o  if ( B  e.  On ,  B ,  1o )
)  .o  ( if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o )  ^o  C ) ) ) ) )
75 eleq1 2539 . . . . . . . . . 10  |-  ( A  =  if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ->  ( A  e.  On  <->  if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o )  e.  On ) )
76 eleq2 2540 . . . . . . . . . 10  |-  ( A  =  if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ->  ( (/)  e.  A  <->  (/)  e.  if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o ) ) )
7775, 76anbi12d 710 . . . . . . . . 9  |-  ( A  =  if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ->  ( ( A  e.  On  /\  (/)  e.  A
)  <->  ( if ( ( A  e.  On  /\  (/)  e.  A ) ,  A ,  1o )  e.  On  /\  (/)  e.  if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o ) ) ) )
78 eleq1 2539 . . . . . . . . . 10  |-  ( 1o  =  if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ->  ( 1o  e.  On 
<->  if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o )  e.  On ) )
79 eleq2 2540 . . . . . . . . . 10  |-  ( 1o  =  if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ->  ( (/)  e.  1o  <->  (/)  e.  if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o ) ) )
8078, 79anbi12d 710 . . . . . . . . 9  |-  ( 1o  =  if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  ->  ( ( 1o  e.  On  /\  (/)  e.  1o ) 
<->  ( if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o )  e.  On  /\  (/)  e.  if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o ) ) ) )
81 1on 7138 . . . . . . . . . 10  |-  1o  e.  On
82 0lt1o 7155 . . . . . . . . . 10  |-  (/)  e.  1o
8381, 82pm3.2i 455 . . . . . . . . 9  |-  ( 1o  e.  On  /\  (/)  e.  1o )
8477, 80, 83elimhyp 3998 . . . . . . . 8  |-  ( if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o )  e.  On  /\  (/)  e.  if ( ( A  e.  On  /\  (/) 
e.  A ) ,  A ,  1o ) )
8584simpli 458 . . . . . . 7  |-  if ( ( A  e.  On  /\  (/)  e.  A ) ,  A ,  1o )  e.  On
8684simpri 462 . . . . . . 7  |-  (/)  e.  if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o )
8781elimel 4002 . . . . . . 7  |-  if ( B  e.  On ,  B ,  1o )  e.  On
8885, 86, 87oeoalem 7246 . . . . . 6  |-  ( C  e.  On  ->  ( if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o )  ^o  ( if ( B  e.  On ,  B ,  1o )  +o  C ) )  =  ( ( if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o )  ^o  if ( B  e.  On ,  B ,  1o )
)  .o  ( if ( ( A  e.  On  /\  (/)  e.  A
) ,  A ,  1o )  ^o  C ) ) )
8968, 74, 88dedth2h 3992 . . . . 5  |-  ( ( ( A  e.  On  /\  (/)  e.  A )  /\  B  e.  On )  ->  ( C  e.  On  ->  ( A  ^o  ( B  +o  C ) )  =  ( ( A  ^o  B )  .o  ( A  ^o  C
) ) ) )
9089impr 619 . . . 4  |-  ( ( ( A  e.  On  /\  (/)  e.  A )  /\  ( B  e.  On  /\  C  e.  On ) )  ->  ( A  ^o  ( B  +o  C
) )  =  ( ( A  ^o  B
)  .o  ( A  ^o  C ) ) )
9190an32s 802 . . 3  |-  ( ( ( A  e.  On  /\  ( B  e.  On  /\  C  e.  On ) )  /\  (/)  e.  A
)  ->  ( A  ^o  ( B  +o  C
) )  =  ( ( A  ^o  B
)  .o  ( A  ^o  C ) ) )
9262, 91oe0lem 7164 . 2  |-  ( ( A  e.  On  /\  ( B  e.  On  /\  C  e.  On ) )  ->  ( A  ^o  ( B  +o  C
) )  =  ( ( A  ^o  B
)  .o  ( A  ^o  C ) ) )
93923impb 1192 1  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( A  ^o  ( B  +o  C ) )  =  ( ( A  ^o  B )  .o  ( A  ^o  C ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   (/)c0 3785   ifcif 3939   Oncon0 4878  (class class class)co 6285   1oc1o 7124    +o coa 7128    .o comu 7129    ^o coe 7130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-ov 6288  df-oprab 6289  df-mpt2 6290  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7043  df-rdg 7077  df-1o 7131  df-2o 7132  df-oadd 7135  df-omul 7136  df-oexp 7137
This theorem is referenced by:  oeoelem  7248  infxpenc  8396  infxpencOLD  8401
  Copyright terms: Public domain W3C validator