MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oen0 Structured version   Unicode version

Theorem oen0 7253
Description: Ordinal exponentiation with a nonzero mantissa is nonzero. Proposition 8.32 of [TakeutiZaring] p. 67. (Contributed by NM, 4-Jan-2005.)
Assertion
Ref Expression
oen0  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  (/)  e.  A )  ->  (/)  e.  ( A  ^o  B ) )

Proof of Theorem oen0
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6304 . . . . . 6  |-  ( x  =  (/)  ->  ( A  ^o  x )  =  ( A  ^o  (/) ) )
21eleq2d 2527 . . . . 5  |-  ( x  =  (/)  ->  ( (/)  e.  ( A  ^o  x
)  <->  (/)  e.  ( A  ^o  (/) ) ) )
3 oveq2 6304 . . . . . 6  |-  ( x  =  y  ->  ( A  ^o  x )  =  ( A  ^o  y
) )
43eleq2d 2527 . . . . 5  |-  ( x  =  y  ->  ( (/) 
e.  ( A  ^o  x )  <->  (/)  e.  ( A  ^o  y ) ) )
5 oveq2 6304 . . . . . 6  |-  ( x  =  suc  y  -> 
( A  ^o  x
)  =  ( A  ^o  suc  y ) )
65eleq2d 2527 . . . . 5  |-  ( x  =  suc  y  -> 
( (/)  e.  ( A  ^o  x )  <->  (/)  e.  ( A  ^o  suc  y
) ) )
7 oveq2 6304 . . . . . 6  |-  ( x  =  B  ->  ( A  ^o  x )  =  ( A  ^o  B
) )
87eleq2d 2527 . . . . 5  |-  ( x  =  B  ->  ( (/) 
e.  ( A  ^o  x )  <->  (/)  e.  ( A  ^o  B ) ) )
9 0lt1o 7172 . . . . . . 7  |-  (/)  e.  1o
10 oe0 7190 . . . . . . 7  |-  ( A  e.  On  ->  ( A  ^o  (/) )  =  1o )
119, 10syl5eleqr 2552 . . . . . 6  |-  ( A  e.  On  ->  (/)  e.  ( A  ^o  (/) ) )
1211adantr 465 . . . . 5  |-  ( ( A  e.  On  /\  (/) 
e.  A )  ->  (/) 
e.  ( A  ^o  (/) ) )
13 simpl 457 . . . . . . . . . . . 12  |-  ( ( A  e.  On  /\  y  e.  On )  ->  A  e.  On )
14 oecl 7205 . . . . . . . . . . . 12  |-  ( ( A  e.  On  /\  y  e.  On )  ->  ( A  ^o  y
)  e.  On )
1513, 14jca 532 . . . . . . . . . . 11  |-  ( ( A  e.  On  /\  y  e.  On )  ->  ( A  e.  On  /\  ( A  ^o  y
)  e.  On ) )
16 omordi 7233 . . . . . . . . . . . 12  |-  ( ( ( A  e.  On  /\  ( A  ^o  y
)  e.  On )  /\  (/)  e.  ( A  ^o  y ) )  ->  ( (/)  e.  A  ->  ( ( A  ^o  y )  .o  (/) )  e.  ( ( A  ^o  y )  .o  A
) ) )
17 om0 7185 . . . . . . . . . . . . . 14  |-  ( ( A  ^o  y )  e.  On  ->  (
( A  ^o  y
)  .o  (/) )  =  (/) )
1817eleq1d 2526 . . . . . . . . . . . . 13  |-  ( ( A  ^o  y )  e.  On  ->  (
( ( A  ^o  y )  .o  (/) )  e.  ( ( A  ^o  y )  .o  A
)  <->  (/)  e.  ( ( A  ^o  y )  .o  A ) ) )
1918ad2antlr 726 . . . . . . . . . . . 12  |-  ( ( ( A  e.  On  /\  ( A  ^o  y
)  e.  On )  /\  (/)  e.  ( A  ^o  y ) )  ->  ( ( ( A  ^o  y )  .o  (/) )  e.  ( ( A  ^o  y
)  .o  A )  <->  (/) 
e.  ( ( A  ^o  y )  .o  A ) ) )
2016, 19sylibd 214 . . . . . . . . . . 11  |-  ( ( ( A  e.  On  /\  ( A  ^o  y
)  e.  On )  /\  (/)  e.  ( A  ^o  y ) )  ->  ( (/)  e.  A  -> 
(/)  e.  ( ( A  ^o  y )  .o  A ) ) )
2115, 20sylan 471 . . . . . . . . . 10  |-  ( ( ( A  e.  On  /\  y  e.  On )  /\  (/)  e.  ( A  ^o  y ) )  ->  ( (/)  e.  A  -> 
(/)  e.  ( ( A  ^o  y )  .o  A ) ) )
22 oesuc 7195 . . . . . . . . . . . 12  |-  ( ( A  e.  On  /\  y  e.  On )  ->  ( A  ^o  suc  y )  =  ( ( A  ^o  y
)  .o  A ) )
2322eleq2d 2527 . . . . . . . . . . 11  |-  ( ( A  e.  On  /\  y  e.  On )  ->  ( (/)  e.  ( A  ^o  suc  y )  <->  (/) 
e.  ( ( A  ^o  y )  .o  A ) ) )
2423adantr 465 . . . . . . . . . 10  |-  ( ( ( A  e.  On  /\  y  e.  On )  /\  (/)  e.  ( A  ^o  y ) )  ->  ( (/)  e.  ( A  ^o  suc  y
)  <->  (/)  e.  ( ( A  ^o  y )  .o  A ) ) )
2521, 24sylibrd 234 . . . . . . . . 9  |-  ( ( ( A  e.  On  /\  y  e.  On )  /\  (/)  e.  ( A  ^o  y ) )  ->  ( (/)  e.  A  -> 
(/)  e.  ( A  ^o  suc  y ) ) )
2625exp31 604 . . . . . . . 8  |-  ( A  e.  On  ->  (
y  e.  On  ->  (
(/)  e.  ( A  ^o  y )  ->  ( (/) 
e.  A  ->  (/)  e.  ( A  ^o  suc  y
) ) ) ) )
2726com12 31 . . . . . . 7  |-  ( y  e.  On  ->  ( A  e.  On  ->  (
(/)  e.  ( A  ^o  y )  ->  ( (/) 
e.  A  ->  (/)  e.  ( A  ^o  suc  y
) ) ) ) )
2827com34 83 . . . . . 6  |-  ( y  e.  On  ->  ( A  e.  On  ->  (
(/)  e.  A  ->  (
(/)  e.  ( A  ^o  y )  ->  (/)  e.  ( A  ^o  suc  y
) ) ) ) )
2928impd 431 . . . . 5  |-  ( y  e.  On  ->  (
( A  e.  On  /\  (/)  e.  A )  -> 
( (/)  e.  ( A  ^o  y )  ->  (/) 
e.  ( A  ^o  suc  y ) ) ) )
30 0ellim 4949 . . . . . . . . . . . 12  |-  ( Lim  x  ->  (/)  e.  x
)
31 eqimss2 3552 . . . . . . . . . . . . 13  |-  ( ( A  ^o  (/) )  =  1o  ->  1o  C_  ( A  ^o  (/) ) )
3210, 31syl 16 . . . . . . . . . . . 12  |-  ( A  e.  On  ->  1o  C_  ( A  ^o  (/) ) )
33 oveq2 6304 . . . . . . . . . . . . . 14  |-  ( y  =  (/)  ->  ( A  ^o  y )  =  ( A  ^o  (/) ) )
3433sseq2d 3527 . . . . . . . . . . . . 13  |-  ( y  =  (/)  ->  ( 1o  C_  ( A  ^o  y
)  <->  1o  C_  ( A  ^o  (/) ) ) )
3534rspcev 3210 . . . . . . . . . . . 12  |-  ( (
(/)  e.  x  /\  1o  C_  ( A  ^o  (/) ) )  ->  E. y  e.  x  1o  C_  ( A  ^o  y ) )
3630, 32, 35syl2an 477 . . . . . . . . . . 11  |-  ( ( Lim  x  /\  A  e.  On )  ->  E. y  e.  x  1o  C_  ( A  ^o  y ) )
37 ssiun 4374 . . . . . . . . . . 11  |-  ( E. y  e.  x  1o  C_  ( A  ^o  y
)  ->  1o  C_  U_ y  e.  x  ( A  ^o  y ) )
3836, 37syl 16 . . . . . . . . . 10  |-  ( ( Lim  x  /\  A  e.  On )  ->  1o  C_ 
U_ y  e.  x  ( A  ^o  y
) )
3938adantrr 716 . . . . . . . . 9  |-  ( ( Lim  x  /\  ( A  e.  On  /\  (/)  e.  A
) )  ->  1o  C_ 
U_ y  e.  x  ( A  ^o  y
) )
40 vex 3112 . . . . . . . . . . . 12  |-  x  e. 
_V
41 oelim 7202 . . . . . . . . . . . 12  |-  ( ( ( A  e.  On  /\  ( x  e.  _V  /\ 
Lim  x ) )  /\  (/)  e.  A )  ->  ( A  ^o  x )  =  U_ y  e.  x  ( A  ^o  y ) )
4240, 41mpanlr1 686 . . . . . . . . . . 11  |-  ( ( ( A  e.  On  /\ 
Lim  x )  /\  (/) 
e.  A )  -> 
( A  ^o  x
)  =  U_ y  e.  x  ( A  ^o  y ) )
4342anasss 647 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  ( Lim  x  /\  (/)  e.  A
) )  ->  ( A  ^o  x )  = 
U_ y  e.  x  ( A  ^o  y
) )
4443an12s 801 . . . . . . . . 9  |-  ( ( Lim  x  /\  ( A  e.  On  /\  (/)  e.  A
) )  ->  ( A  ^o  x )  = 
U_ y  e.  x  ( A  ^o  y
) )
4539, 44sseqtr4d 3536 . . . . . . . 8  |-  ( ( Lim  x  /\  ( A  e.  On  /\  (/)  e.  A
) )  ->  1o  C_  ( A  ^o  x
) )
46 limelon 4950 . . . . . . . . . . . 12  |-  ( ( x  e.  _V  /\  Lim  x )  ->  x  e.  On )
4740, 46mpan 670 . . . . . . . . . . 11  |-  ( Lim  x  ->  x  e.  On )
48 oecl 7205 . . . . . . . . . . . 12  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( A  ^o  x
)  e.  On )
4948ancoms 453 . . . . . . . . . . 11  |-  ( ( x  e.  On  /\  A  e.  On )  ->  ( A  ^o  x
)  e.  On )
5047, 49sylan 471 . . . . . . . . . 10  |-  ( ( Lim  x  /\  A  e.  On )  ->  ( A  ^o  x )  e.  On )
51 eloni 4897 . . . . . . . . . 10  |-  ( ( A  ^o  x )  e.  On  ->  Ord  ( A  ^o  x
) )
52 ordgt0ge1 7165 . . . . . . . . . 10  |-  ( Ord  ( A  ^o  x
)  ->  ( (/)  e.  ( A  ^o  x )  <-> 
1o  C_  ( A  ^o  x ) ) )
5350, 51, 523syl 20 . . . . . . . . 9  |-  ( ( Lim  x  /\  A  e.  On )  ->  ( (/) 
e.  ( A  ^o  x )  <->  1o  C_  ( A  ^o  x ) ) )
5453adantrr 716 . . . . . . . 8  |-  ( ( Lim  x  /\  ( A  e.  On  /\  (/)  e.  A
) )  ->  ( (/) 
e.  ( A  ^o  x )  <->  1o  C_  ( A  ^o  x ) ) )
5545, 54mpbird 232 . . . . . . 7  |-  ( ( Lim  x  /\  ( A  e.  On  /\  (/)  e.  A
) )  ->  (/)  e.  ( A  ^o  x ) )
5655ex 434 . . . . . 6  |-  ( Lim  x  ->  ( ( A  e.  On  /\  (/)  e.  A
)  ->  (/)  e.  ( A  ^o  x ) ) )
5756a1dd 46 . . . . 5  |-  ( Lim  x  ->  ( ( A  e.  On  /\  (/)  e.  A
)  ->  ( A. y  e.  x  (/)  e.  ( A  ^o  y )  ->  (/)  e.  ( A  ^o  x ) ) ) )
582, 4, 6, 8, 12, 29, 57tfinds3 6698 . . . 4  |-  ( B  e.  On  ->  (
( A  e.  On  /\  (/)  e.  A )  ->  (/) 
e.  ( A  ^o  B ) ) )
5958expd 436 . . 3  |-  ( B  e.  On  ->  ( A  e.  On  ->  (
(/)  e.  A  ->  (/)  e.  ( A  ^o  B
) ) ) )
6059com12 31 . 2  |-  ( A  e.  On  ->  ( B  e.  On  ->  (
(/)  e.  A  ->  (/)  e.  ( A  ^o  B
) ) ) )
6160imp31 432 1  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  (/)  e.  A )  ->  (/)  e.  ( A  ^o  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1395    e. wcel 1819   A.wral 2807   E.wrex 2808   _Vcvv 3109    C_ wss 3471   (/)c0 3793   U_ciun 4332   Ord word 4886   Oncon0 4887   Lim wlim 4888   suc csuc 4889  (class class class)co 6296   1oc1o 7141    .o comu 7146    ^o coe 7147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-recs 7060  df-rdg 7094  df-1o 7148  df-oadd 7152  df-omul 7153  df-oexp 7154
This theorem is referenced by:  oeordi  7254  oeordsuc  7261  oeoelem  7265  oelimcl  7267  oeeui  7269  cantnflt  8108  cantnfltOLD  8138  cnfcom  8161  cnfcomOLD  8169  infxpenc  8412  infxpenc2  8416  infxpencOLD  8417  infxpenc2OLD  8420
  Copyright terms: Public domain W3C validator