MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oemapvali Structured version   Unicode version

Theorem oemapvali 7995
Description: If  F  <  G, then there is some  z witnessing this, but we can say more and in fact there is a definable expression  X that also witnesses  F  <  G. (Contributed by Mario Carneiro, 25-May-2015.)
Hypotheses
Ref Expression
cantnfs.s  |-  S  =  dom  ( A CNF  B
)
cantnfs.a  |-  ( ph  ->  A  e.  On )
cantnfs.b  |-  ( ph  ->  B  e.  On )
oemapval.t  |-  T  =  { <. x ,  y
>.  |  E. z  e.  B  ( (
x `  z )  e.  ( y `  z
)  /\  A. w  e.  B  ( z  e.  w  ->  ( x `
 w )  =  ( y `  w
) ) ) }
oemapval.f  |-  ( ph  ->  F  e.  S )
oemapval.g  |-  ( ph  ->  G  e.  S )
oemapvali.r  |-  ( ph  ->  F T G )
oemapvali.x  |-  X  = 
U. { c  e.  B  |  ( F `
 c )  e.  ( G `  c
) }
Assertion
Ref Expression
oemapvali  |-  ( ph  ->  ( X  e.  B  /\  ( F `  X
)  e.  ( G `
 X )  /\  A. w  e.  B  ( X  e.  w  -> 
( F `  w
)  =  ( G `
 w ) ) ) )
Distinct variable groups:    w, c, x, y, z, B    A, c, w, x, y, z    T, c    w, F, x, y, z    S, c, x, y, z    G, c, w, x, y, z    ph, x, y, z    w, X, x, y, z    F, c    ph, c
Allowed substitution hints:    ph( w)    S( w)    T( x, y, z, w)    X( c)

Proof of Theorem oemapvali
StepHypRef Expression
1 oemapvali.r . . 3  |-  ( ph  ->  F T G )
2 cantnfs.s . . . 4  |-  S  =  dom  ( A CNF  B
)
3 cantnfs.a . . . 4  |-  ( ph  ->  A  e.  On )
4 cantnfs.b . . . 4  |-  ( ph  ->  B  e.  On )
5 oemapval.t . . . 4  |-  T  =  { <. x ,  y
>.  |  E. z  e.  B  ( (
x `  z )  e.  ( y `  z
)  /\  A. w  e.  B  ( z  e.  w  ->  ( x `
 w )  =  ( y `  w
) ) ) }
6 oemapval.f . . . 4  |-  ( ph  ->  F  e.  S )
7 oemapval.g . . . 4  |-  ( ph  ->  G  e.  S )
82, 3, 4, 5, 6, 7oemapval 7994 . . 3  |-  ( ph  ->  ( F T G  <->  E. z  e.  B  ( ( F `  z )  e.  ( G `  z )  /\  A. w  e.  B  ( z  e.  w  ->  ( F `  w )  =  ( G `  w ) ) ) ) )
91, 8mpbid 210 . 2  |-  ( ph  ->  E. z  e.  B  ( ( F `  z )  e.  ( G `  z )  /\  A. w  e.  B  ( z  e.  w  ->  ( F `  w )  =  ( G `  w ) ) ) )
10 ssrab2 3537 . . . 4  |-  { c  e.  B  |  ( F `  c )  e.  ( G `  c ) }  C_  B
11 oemapvali.x . . . . 5  |-  X  = 
U. { c  e.  B  |  ( F `
 c )  e.  ( G `  c
) }
124adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  B  /\  (
( F `  z
)  e.  ( G `
 z )  /\  A. w  e.  B  ( z  e.  w  -> 
( F `  w
)  =  ( G `
 w ) ) ) ) )  ->  B  e.  On )
13 onss 6504 . . . . . . . 8  |-  ( B  e.  On  ->  B  C_  On )
1412, 13syl 16 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  B  /\  (
( F `  z
)  e.  ( G `
 z )  /\  A. w  e.  B  ( z  e.  w  -> 
( F `  w
)  =  ( G `
 w ) ) ) ) )  ->  B  C_  On )
1510, 14syl5ss 3467 . . . . . 6  |-  ( (
ph  /\  ( z  e.  B  /\  (
( F `  z
)  e.  ( G `
 z )  /\  A. w  e.  B  ( z  e.  w  -> 
( F `  w
)  =  ( G `
 w ) ) ) ) )  ->  { c  e.  B  |  ( F `  c )  e.  ( G `  c ) }  C_  On )
162, 3, 4cantnfs 7977 . . . . . . . . . 10  |-  ( ph  ->  ( G  e.  S  <->  ( G : B --> A  /\  G finSupp 
(/) ) ) )
177, 16mpbid 210 . . . . . . . . 9  |-  ( ph  ->  ( G : B --> A  /\  G finSupp  (/) ) )
1817simprd 463 . . . . . . . 8  |-  ( ph  ->  G finSupp  (/) )
1918adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  B  /\  (
( F `  z
)  e.  ( G `
 z )  /\  A. w  e.  B  ( z  e.  w  -> 
( F `  w
)  =  ( G `
 w ) ) ) ) )  ->  G finSupp 
(/) )
2043ad2ant1 1009 . . . . . . . . . 10  |-  ( (
ph  /\  c  e.  B  /\  ( F `  c )  e.  ( G `  c ) )  ->  B  e.  On )
21 simp2 989 . . . . . . . . . 10  |-  ( (
ph  /\  c  e.  B  /\  ( F `  c )  e.  ( G `  c ) )  ->  c  e.  B )
2217simpld 459 . . . . . . . . . . 11  |-  ( ph  ->  G : B --> A )
23223ad2ant1 1009 . . . . . . . . . 10  |-  ( (
ph  /\  c  e.  B  /\  ( F `  c )  e.  ( G `  c ) )  ->  G : B
--> A )
24 ne0i 3743 . . . . . . . . . . 11  |-  ( ( F `  c )  e.  ( G `  c )  ->  ( G `  c )  =/=  (/) )
25243ad2ant3 1011 . . . . . . . . . 10  |-  ( (
ph  /\  c  e.  B  /\  ( F `  c )  e.  ( G `  c ) )  ->  ( G `  c )  =/=  (/) )
26 fvn0elsupp 6808 . . . . . . . . . 10  |-  ( ( ( B  e.  On  /\  c  e.  B )  /\  ( G : B
--> A  /\  ( G `
 c )  =/=  (/) ) )  ->  c  e.  ( G supp  (/) ) )
2720, 21, 23, 25, 26syl22anc 1220 . . . . . . . . 9  |-  ( (
ph  /\  c  e.  B  /\  ( F `  c )  e.  ( G `  c ) )  ->  c  e.  ( G supp  (/) ) )
2827rabssdv 3532 . . . . . . . 8  |-  ( ph  ->  { c  e.  B  |  ( F `  c )  e.  ( G `  c ) }  C_  ( G supp  (/) ) )
2928adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  B  /\  (
( F `  z
)  e.  ( G `
 z )  /\  A. w  e.  B  ( z  e.  w  -> 
( F `  w
)  =  ( G `
 w ) ) ) ) )  ->  { c  e.  B  |  ( F `  c )  e.  ( G `  c ) }  C_  ( G supp  (/) ) )
30 fsuppimp 7729 . . . . . . . 8  |-  ( G finSupp  (/) 
->  ( Fun  G  /\  ( G supp  (/) )  e. 
Fin ) )
31 ssfi 7636 . . . . . . . . . 10  |-  ( ( ( G supp  (/) )  e. 
Fin  /\  { c  e.  B  |  ( F `  c )  e.  ( G `  c
) }  C_  ( G supp 
(/) ) )  ->  { c  e.  B  |  ( F `  c )  e.  ( G `  c ) }  e.  Fin )
3231ex 434 . . . . . . . . 9  |-  ( ( G supp  (/) )  e.  Fin  ->  ( { c  e.  B  |  ( F `
 c )  e.  ( G `  c
) }  C_  ( G supp 
(/) )  ->  { c  e.  B  |  ( F `  c )  e.  ( G `  c ) }  e.  Fin ) )
3332adantl 466 . . . . . . . 8  |-  ( ( Fun  G  /\  ( G supp 
(/) )  e.  Fin )  ->  ( { c  e.  B  |  ( F `  c )  e.  ( G `  c ) }  C_  ( G supp  (/) )  ->  { c  e.  B  |  ( F `  c )  e.  ( G `  c ) }  e.  Fin )
)
3430, 33syl 16 . . . . . . 7  |-  ( G finSupp  (/) 
->  ( { c  e.  B  |  ( F `
 c )  e.  ( G `  c
) }  C_  ( G supp 
(/) )  ->  { c  e.  B  |  ( F `  c )  e.  ( G `  c ) }  e.  Fin ) )
3519, 29, 34sylc 60 . . . . . 6  |-  ( (
ph  /\  ( z  e.  B  /\  (
( F `  z
)  e.  ( G `
 z )  /\  A. w  e.  B  ( z  e.  w  -> 
( F `  w
)  =  ( G `
 w ) ) ) ) )  ->  { c  e.  B  |  ( F `  c )  e.  ( G `  c ) }  e.  Fin )
36 simprl 755 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  B  /\  (
( F `  z
)  e.  ( G `
 z )  /\  A. w  e.  B  ( z  e.  w  -> 
( F `  w
)  =  ( G `
 w ) ) ) ) )  -> 
z  e.  B )
37 simprrl 763 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  B  /\  (
( F `  z
)  e.  ( G `
 z )  /\  A. w  e.  B  ( z  e.  w  -> 
( F `  w
)  =  ( G `
 w ) ) ) ) )  -> 
( F `  z
)  e.  ( G `
 z ) )
38 fveq2 5791 . . . . . . . . . 10  |-  ( c  =  z  ->  ( F `  c )  =  ( F `  z ) )
39 fveq2 5791 . . . . . . . . . 10  |-  ( c  =  z  ->  ( G `  c )  =  ( G `  z ) )
4038, 39eleq12d 2533 . . . . . . . . 9  |-  ( c  =  z  ->  (
( F `  c
)  e.  ( G `
 c )  <->  ( F `  z )  e.  ( G `  z ) ) )
4140elrab 3216 . . . . . . . 8  |-  ( z  e.  { c  e.  B  |  ( F `
 c )  e.  ( G `  c
) }  <->  ( z  e.  B  /\  ( F `  z )  e.  ( G `  z
) ) )
4236, 37, 41sylanbrc 664 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  B  /\  (
( F `  z
)  e.  ( G `
 z )  /\  A. w  e.  B  ( z  e.  w  -> 
( F `  w
)  =  ( G `
 w ) ) ) ) )  -> 
z  e.  { c  e.  B  |  ( F `  c )  e.  ( G `  c ) } )
43 ne0i 3743 . . . . . . 7  |-  ( z  e.  { c  e.  B  |  ( F `
 c )  e.  ( G `  c
) }  ->  { c  e.  B  |  ( F `  c )  e.  ( G `  c ) }  =/=  (/) )
4442, 43syl 16 . . . . . 6  |-  ( (
ph  /\  ( z  e.  B  /\  (
( F `  z
)  e.  ( G `
 z )  /\  A. w  e.  B  ( z  e.  w  -> 
( F `  w
)  =  ( G `
 w ) ) ) ) )  ->  { c  e.  B  |  ( F `  c )  e.  ( G `  c ) }  =/=  (/) )
45 ordunifi 7665 . . . . . 6  |-  ( ( { c  e.  B  |  ( F `  c )  e.  ( G `  c ) }  C_  On  /\  {
c  e.  B  | 
( F `  c
)  e.  ( G `
 c ) }  e.  Fin  /\  {
c  e.  B  | 
( F `  c
)  e.  ( G `
 c ) }  =/=  (/) )  ->  U. {
c  e.  B  | 
( F `  c
)  e.  ( G `
 c ) }  e.  { c  e.  B  |  ( F `
 c )  e.  ( G `  c
) } )
4615, 35, 44, 45syl3anc 1219 . . . . 5  |-  ( (
ph  /\  ( z  e.  B  /\  (
( F `  z
)  e.  ( G `
 z )  /\  A. w  e.  B  ( z  e.  w  -> 
( F `  w
)  =  ( G `
 w ) ) ) ) )  ->  U. { c  e.  B  |  ( F `  c )  e.  ( G `  c ) }  e.  { c  e.  B  |  ( F `  c )  e.  ( G `  c ) } )
4711, 46syl5eqel 2543 . . . 4  |-  ( (
ph  /\  ( z  e.  B  /\  (
( F `  z
)  e.  ( G `
 z )  /\  A. w  e.  B  ( z  e.  w  -> 
( F `  w
)  =  ( G `
 w ) ) ) ) )  ->  X  e.  { c  e.  B  |  ( F `  c )  e.  ( G `  c
) } )
4810, 47sseldi 3454 . . 3  |-  ( (
ph  /\  ( z  e.  B  /\  (
( F `  z
)  e.  ( G `
 z )  /\  A. w  e.  B  ( z  e.  w  -> 
( F `  w
)  =  ( G `
 w ) ) ) ) )  ->  X  e.  B )
49 fveq2 5791 . . . . . . 7  |-  ( x  =  X  ->  ( F `  x )  =  ( F `  X ) )
50 fveq2 5791 . . . . . . 7  |-  ( x  =  X  ->  ( G `  x )  =  ( G `  X ) )
5149, 50eleq12d 2533 . . . . . 6  |-  ( x  =  X  ->  (
( F `  x
)  e.  ( G `
 x )  <->  ( F `  X )  e.  ( G `  X ) ) )
52 fveq2 5791 . . . . . . . 8  |-  ( c  =  x  ->  ( F `  c )  =  ( F `  x ) )
53 fveq2 5791 . . . . . . . 8  |-  ( c  =  x  ->  ( G `  c )  =  ( G `  x ) )
5452, 53eleq12d 2533 . . . . . . 7  |-  ( c  =  x  ->  (
( F `  c
)  e.  ( G `
 c )  <->  ( F `  x )  e.  ( G `  x ) ) )
5554cbvrabv 3069 . . . . . 6  |-  { c  e.  B  |  ( F `  c )  e.  ( G `  c ) }  =  { x  e.  B  |  ( F `  x )  e.  ( G `  x ) }
5651, 55elrab2 3218 . . . . 5  |-  ( X  e.  { c  e.  B  |  ( F `
 c )  e.  ( G `  c
) }  <->  ( X  e.  B  /\  ( F `  X )  e.  ( G `  X
) ) )
5747, 56sylib 196 . . . 4  |-  ( (
ph  /\  ( z  e.  B  /\  (
( F `  z
)  e.  ( G `
 z )  /\  A. w  e.  B  ( z  e.  w  -> 
( F `  w
)  =  ( G `
 w ) ) ) ) )  -> 
( X  e.  B  /\  ( F `  X
)  e.  ( G `
 X ) ) )
5857simprd 463 . . 3  |-  ( (
ph  /\  ( z  e.  B  /\  (
( F `  z
)  e.  ( G `
 z )  /\  A. w  e.  B  ( z  e.  w  -> 
( F `  w
)  =  ( G `
 w ) ) ) ) )  -> 
( F `  X
)  e.  ( G `
 X ) )
59 simprrr 764 . . . 4  |-  ( (
ph  /\  ( z  e.  B  /\  (
( F `  z
)  e.  ( G `
 z )  /\  A. w  e.  B  ( z  e.  w  -> 
( F `  w
)  =  ( G `
 w ) ) ) ) )  ->  A. w  e.  B  ( z  e.  w  ->  ( F `  w
)  =  ( G `
 w ) ) )
603adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  ( z  e.  B  /\  (
( F `  z
)  e.  ( G `
 z )  /\  A. w  e.  B  ( z  e.  w  -> 
( F `  w
)  =  ( G `
 w ) ) ) ) )  ->  A  e.  On )
6122adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( z  e.  B  /\  (
( F `  z
)  e.  ( G `
 z )  /\  A. w  e.  B  ( z  e.  w  -> 
( F `  w
)  =  ( G `
 w ) ) ) ) )  ->  G : B --> A )
6261, 48ffvelrnd 5945 . . . . . . . . . . 11  |-  ( (
ph  /\  ( z  e.  B  /\  (
( F `  z
)  e.  ( G `
 z )  /\  A. w  e.  B  ( z  e.  w  -> 
( F `  w
)  =  ( G `
 w ) ) ) ) )  -> 
( G `  X
)  e.  A )
63 onelon 4844 . . . . . . . . . . 11  |-  ( ( A  e.  On  /\  ( G `  X )  e.  A )  -> 
( G `  X
)  e.  On )
6460, 62, 63syl2anc 661 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  B  /\  (
( F `  z
)  e.  ( G `
 z )  /\  A. w  e.  B  ( z  e.  w  -> 
( F `  w
)  =  ( G `
 w ) ) ) ) )  -> 
( G `  X
)  e.  On )
65 eloni 4829 . . . . . . . . . 10  |-  ( ( G `  X )  e.  On  ->  Ord  ( G `  X ) )
66 ordirr 4837 . . . . . . . . . 10  |-  ( Ord  ( G `  X
)  ->  -.  ( G `  X )  e.  ( G `  X
) )
6764, 65, 663syl 20 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  B  /\  (
( F `  z
)  e.  ( G `
 z )  /\  A. w  e.  B  ( z  e.  w  -> 
( F `  w
)  =  ( G `
 w ) ) ) ) )  ->  -.  ( G `  X
)  e.  ( G `
 X ) )
68 nelneq 2568 . . . . . . . . 9  |-  ( ( ( F `  X
)  e.  ( G `
 X )  /\  -.  ( G `  X
)  e.  ( G `
 X ) )  ->  -.  ( F `  X )  =  ( G `  X ) )
6958, 67, 68syl2anc 661 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  B  /\  (
( F `  z
)  e.  ( G `
 z )  /\  A. w  e.  B  ( z  e.  w  -> 
( F `  w
)  =  ( G `
 w ) ) ) ) )  ->  -.  ( F `  X
)  =  ( G `
 X ) )
70 eleq2 2524 . . . . . . . . . . 11  |-  ( w  =  X  ->  (
z  e.  w  <->  z  e.  X ) )
71 fveq2 5791 . . . . . . . . . . . 12  |-  ( w  =  X  ->  ( F `  w )  =  ( F `  X ) )
72 fveq2 5791 . . . . . . . . . . . 12  |-  ( w  =  X  ->  ( G `  w )  =  ( G `  X ) )
7371, 72eqeq12d 2473 . . . . . . . . . . 11  |-  ( w  =  X  ->  (
( F `  w
)  =  ( G `
 w )  <->  ( F `  X )  =  ( G `  X ) ) )
7470, 73imbi12d 320 . . . . . . . . . 10  |-  ( w  =  X  ->  (
( z  e.  w  ->  ( F `  w
)  =  ( G `
 w ) )  <-> 
( z  e.  X  ->  ( F `  X
)  =  ( G `
 X ) ) ) )
7574rspccv 3168 . . . . . . . . 9  |-  ( A. w  e.  B  (
z  e.  w  -> 
( F `  w
)  =  ( G `
 w ) )  ->  ( X  e.  B  ->  ( z  e.  X  ->  ( F `
 X )  =  ( G `  X
) ) ) )
7659, 48, 75sylc 60 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  B  /\  (
( F `  z
)  e.  ( G `
 z )  /\  A. w  e.  B  ( z  e.  w  -> 
( F `  w
)  =  ( G `
 w ) ) ) ) )  -> 
( z  e.  X  ->  ( F `  X
)  =  ( G `
 X ) ) )
7769, 76mtod 177 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  B  /\  (
( F `  z
)  e.  ( G `
 z )  /\  A. w  e.  B  ( z  e.  w  -> 
( F `  w
)  =  ( G `
 w ) ) ) ) )  ->  -.  z  e.  X
)
78 ssexg 4538 . . . . . . . . . . 11  |-  ( ( { c  e.  B  |  ( F `  c )  e.  ( G `  c ) }  C_  B  /\  B  e.  On )  ->  { c  e.  B  |  ( F `  c )  e.  ( G `  c ) }  e.  _V )
7910, 12, 78sylancr 663 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  B  /\  (
( F `  z
)  e.  ( G `
 z )  /\  A. w  e.  B  ( z  e.  w  -> 
( F `  w
)  =  ( G `
 w ) ) ) ) )  ->  { c  e.  B  |  ( F `  c )  e.  ( G `  c ) }  e.  _V )
80 ssonuni 6500 . . . . . . . . . 10  |-  ( { c  e.  B  | 
( F `  c
)  e.  ( G `
 c ) }  e.  _V  ->  ( { c  e.  B  |  ( F `  c )  e.  ( G `  c ) }  C_  On  ->  U. { c  e.  B  |  ( F `  c )  e.  ( G `  c ) }  e.  On ) )
8179, 15, 80sylc 60 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  B  /\  (
( F `  z
)  e.  ( G `
 z )  /\  A. w  e.  B  ( z  e.  w  -> 
( F `  w
)  =  ( G `
 w ) ) ) ) )  ->  U. { c  e.  B  |  ( F `  c )  e.  ( G `  c ) }  e.  On )
8211, 81syl5eqel 2543 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  B  /\  (
( F `  z
)  e.  ( G `
 z )  /\  A. w  e.  B  ( z  e.  w  -> 
( F `  w
)  =  ( G `
 w ) ) ) ) )  ->  X  e.  On )
83 onelon 4844 . . . . . . . . 9  |-  ( ( B  e.  On  /\  z  e.  B )  ->  z  e.  On )
8412, 36, 83syl2anc 661 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  B  /\  (
( F `  z
)  e.  ( G `
 z )  /\  A. w  e.  B  ( z  e.  w  -> 
( F `  w
)  =  ( G `
 w ) ) ) ) )  -> 
z  e.  On )
85 ontri1 4853 . . . . . . . 8  |-  ( ( X  e.  On  /\  z  e.  On )  ->  ( X  C_  z  <->  -.  z  e.  X ) )
8682, 84, 85syl2anc 661 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  B  /\  (
( F `  z
)  e.  ( G `
 z )  /\  A. w  e.  B  ( z  e.  w  -> 
( F `  w
)  =  ( G `
 w ) ) ) ) )  -> 
( X  C_  z  <->  -.  z  e.  X ) )
8777, 86mpbird 232 . . . . . 6  |-  ( (
ph  /\  ( z  e.  B  /\  (
( F `  z
)  e.  ( G `
 z )  /\  A. w  e.  B  ( z  e.  w  -> 
( F `  w
)  =  ( G `
 w ) ) ) ) )  ->  X  C_  z )
88 elssuni 4221 . . . . . . . 8  |-  ( z  e.  { c  e.  B  |  ( F `
 c )  e.  ( G `  c
) }  ->  z  C_ 
U. { c  e.  B  |  ( F `
 c )  e.  ( G `  c
) } )
8988, 11syl6sseqr 3503 . . . . . . 7  |-  ( z  e.  { c  e.  B  |  ( F `
 c )  e.  ( G `  c
) }  ->  z  C_  X )
9042, 89syl 16 . . . . . 6  |-  ( (
ph  /\  ( z  e.  B  /\  (
( F `  z
)  e.  ( G `
 z )  /\  A. w  e.  B  ( z  e.  w  -> 
( F `  w
)  =  ( G `
 w ) ) ) ) )  -> 
z  C_  X )
9187, 90eqssd 3473 . . . . 5  |-  ( (
ph  /\  ( z  e.  B  /\  (
( F `  z
)  e.  ( G `
 z )  /\  A. w  e.  B  ( z  e.  w  -> 
( F `  w
)  =  ( G `
 w ) ) ) ) )  ->  X  =  z )
92 eleq1 2523 . . . . . . 7  |-  ( X  =  z  ->  ( X  e.  w  <->  z  e.  w ) )
9392imbi1d 317 . . . . . 6  |-  ( X  =  z  ->  (
( X  e.  w  ->  ( F `  w
)  =  ( G `
 w ) )  <-> 
( z  e.  w  ->  ( F `  w
)  =  ( G `
 w ) ) ) )
9493ralbidv 2838 . . . . 5  |-  ( X  =  z  ->  ( A. w  e.  B  ( X  e.  w  ->  ( F `  w
)  =  ( G `
 w ) )  <->  A. w  e.  B  ( z  e.  w  ->  ( F `  w
)  =  ( G `
 w ) ) ) )
9591, 94syl 16 . . . 4  |-  ( (
ph  /\  ( z  e.  B  /\  (
( F `  z
)  e.  ( G `
 z )  /\  A. w  e.  B  ( z  e.  w  -> 
( F `  w
)  =  ( G `
 w ) ) ) ) )  -> 
( A. w  e.  B  ( X  e.  w  ->  ( F `  w )  =  ( G `  w ) )  <->  A. w  e.  B  ( z  e.  w  ->  ( F `  w
)  =  ( G `
 w ) ) ) )
9659, 95mpbird 232 . . 3  |-  ( (
ph  /\  ( z  e.  B  /\  (
( F `  z
)  e.  ( G `
 z )  /\  A. w  e.  B  ( z  e.  w  -> 
( F `  w
)  =  ( G `
 w ) ) ) ) )  ->  A. w  e.  B  ( X  e.  w  ->  ( F `  w
)  =  ( G `
 w ) ) )
9748, 58, 963jca 1168 . 2  |-  ( (
ph  /\  ( z  e.  B  /\  (
( F `  z
)  e.  ( G `
 z )  /\  A. w  e.  B  ( z  e.  w  -> 
( F `  w
)  =  ( G `
 w ) ) ) ) )  -> 
( X  e.  B  /\  ( F `  X
)  e.  ( G `
 X )  /\  A. w  e.  B  ( X  e.  w  -> 
( F `  w
)  =  ( G `
 w ) ) ) )
989, 97rexlimddv 2943 1  |-  ( ph  ->  ( X  e.  B  /\  ( F `  X
)  e.  ( G `
 X )  /\  A. w  e.  B  ( X  e.  w  -> 
( F `  w
)  =  ( G `
 w ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2644   A.wral 2795   E.wrex 2796   {crab 2799   _Vcvv 3070    C_ wss 3428   (/)c0 3737   U.cuni 4191   class class class wbr 4392   {copab 4449   Ord word 4818   Oncon0 4819   dom cdm 4940   Fun wfun 5512   -->wf 5514   ` cfv 5518  (class class class)co 6192   supp csupp 6792   Fincfn 7412   finSupp cfsupp 7723   CNF ccnf 7970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4503  ax-sep 4513  ax-nul 4521  ax-pow 4570  ax-pr 4631  ax-un 6474
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-reu 2802  df-rab 2804  df-v 3072  df-sbc 3287  df-csb 3389  df-dif 3431  df-un 3433  df-in 3435  df-ss 3442  df-pss 3444  df-nul 3738  df-if 3892  df-pw 3962  df-sn 3978  df-pr 3980  df-tp 3982  df-op 3984  df-uni 4192  df-iun 4273  df-br 4393  df-opab 4451  df-mpt 4452  df-tr 4486  df-eprel 4732  df-id 4736  df-po 4741  df-so 4742  df-fr 4779  df-we 4781  df-ord 4822  df-on 4823  df-lim 4824  df-suc 4825  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5481  df-fun 5520  df-fn 5521  df-f 5522  df-f1 5523  df-fo 5524  df-f1o 5525  df-fv 5526  df-ov 6195  df-oprab 6196  df-mpt2 6197  df-om 6579  df-supp 6793  df-recs 6934  df-rdg 6968  df-seqom 7005  df-1o 7022  df-er 7203  df-map 7318  df-en 7413  df-fin 7416  df-fsupp 7724  df-cnf 7971
This theorem is referenced by:  cantnflem1a  7996  cantnflem1b  7997  cantnflem1c  7998  cantnflem1d  7999  cantnflem1  8000  cantnflem1aOLD  8019  cantnflem1bOLD  8020  cantnflem1cOLD  8021  cantnflem1dOLD  8022  cantnflem1OLD  8023
  Copyright terms: Public domain W3C validator