MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oelimcl Structured version   Unicode version

Theorem oelimcl 7141
Description: The ordinal exponential with a limit ordinal is a limit ordinal. (Contributed by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
oelimcl  |-  ( ( A  e.  ( On 
\  2o )  /\  ( B  e.  C  /\  Lim  B ) )  ->  Lim  ( A  ^o  B ) )

Proof of Theorem oelimcl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifi 3578 . . . 4  |-  ( A  e.  ( On  \  2o )  ->  A  e.  On )
2 limelon 4882 . . . 4  |-  ( ( B  e.  C  /\  Lim  B )  ->  B  e.  On )
3 oecl 7079 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  ^o  B
)  e.  On )
41, 2, 3syl2an 477 . . 3  |-  ( ( A  e.  ( On 
\  2o )  /\  ( B  e.  C  /\  Lim  B ) )  ->  ( A  ^o  B )  e.  On )
5 eloni 4829 . . 3  |-  ( ( A  ^o  B )  e.  On  ->  Ord  ( A  ^o  B ) )
64, 5syl 16 . 2  |-  ( ( A  e.  ( On 
\  2o )  /\  ( B  e.  C  /\  Lim  B ) )  ->  Ord  ( A  ^o  B ) )
71adantr 465 . . 3  |-  ( ( A  e.  ( On 
\  2o )  /\  ( B  e.  C  /\  Lim  B ) )  ->  A  e.  On )
82adantl 466 . . 3  |-  ( ( A  e.  ( On 
\  2o )  /\  ( B  e.  C  /\  Lim  B ) )  ->  B  e.  On )
9 dif20el 7047 . . . 4  |-  ( A  e.  ( On  \  2o )  ->  (/)  e.  A
)
109adantr 465 . . 3  |-  ( ( A  e.  ( On 
\  2o )  /\  ( B  e.  C  /\  Lim  B ) )  ->  (/)  e.  A )
11 oen0 7127 . . 3  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  (/)  e.  A )  ->  (/)  e.  ( A  ^o  B ) )
127, 8, 10, 11syl21anc 1218 . 2  |-  ( ( A  e.  ( On 
\  2o )  /\  ( B  e.  C  /\  Lim  B ) )  ->  (/)  e.  ( A  ^o  B ) )
13 oelim2 7136 . . . . . 6  |-  ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  ->  ( A  ^o  B )  =  U_ y  e.  ( B  \  1o ) ( A  ^o  y ) )
141, 13sylan 471 . . . . 5  |-  ( ( A  e.  ( On 
\  2o )  /\  ( B  e.  C  /\  Lim  B ) )  ->  ( A  ^o  B )  =  U_ y  e.  ( B  \  1o ) ( A  ^o  y ) )
1514eleq2d 2521 . . . 4  |-  ( ( A  e.  ( On 
\  2o )  /\  ( B  e.  C  /\  Lim  B ) )  ->  ( x  e.  ( A  ^o  B
)  <->  x  e.  U_ y  e.  ( B  \  1o ) ( A  ^o  y ) ) )
16 eliun 4275 . . . . 5  |-  ( x  e.  U_ y  e.  ( B  \  1o ) ( A  ^o  y )  <->  E. y  e.  ( B  \  1o ) x  e.  ( A  ^o  y ) )
17 eldifi 3578 . . . . . . 7  |-  ( y  e.  ( B  \  1o )  ->  y  e.  B )
187adantr 465 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( On  \  2o )  /\  ( B  e.  C  /\  Lim  B
) )  /\  (
y  e.  B  /\  x  e.  ( A  ^o  y ) ) )  ->  A  e.  On )
198adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ( On  \  2o )  /\  ( B  e.  C  /\  Lim  B
) )  /\  (
y  e.  B  /\  x  e.  ( A  ^o  y ) ) )  ->  B  e.  On )
20 simprl 755 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ( On  \  2o )  /\  ( B  e.  C  /\  Lim  B
) )  /\  (
y  e.  B  /\  x  e.  ( A  ^o  y ) ) )  ->  y  e.  B
)
21 onelon 4844 . . . . . . . . . . . . 13  |-  ( ( B  e.  On  /\  y  e.  B )  ->  y  e.  On )
2219, 20, 21syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( On  \  2o )  /\  ( B  e.  C  /\  Lim  B
) )  /\  (
y  e.  B  /\  x  e.  ( A  ^o  y ) ) )  ->  y  e.  On )
23 oecl 7079 . . . . . . . . . . . 12  |-  ( ( A  e.  On  /\  y  e.  On )  ->  ( A  ^o  y
)  e.  On )
2418, 22, 23syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( On  \  2o )  /\  ( B  e.  C  /\  Lim  B
) )  /\  (
y  e.  B  /\  x  e.  ( A  ^o  y ) ) )  ->  ( A  ^o  y )  e.  On )
25 eloni 4829 . . . . . . . . . . 11  |-  ( ( A  ^o  y )  e.  On  ->  Ord  ( A  ^o  y
) )
2624, 25syl 16 . . . . . . . . . 10  |-  ( ( ( A  e.  ( On  \  2o )  /\  ( B  e.  C  /\  Lim  B
) )  /\  (
y  e.  B  /\  x  e.  ( A  ^o  y ) ) )  ->  Ord  ( A  ^o  y ) )
27 simprr 756 . . . . . . . . . 10  |-  ( ( ( A  e.  ( On  \  2o )  /\  ( B  e.  C  /\  Lim  B
) )  /\  (
y  e.  B  /\  x  e.  ( A  ^o  y ) ) )  ->  x  e.  ( A  ^o  y ) )
28 ordsucss 6531 . . . . . . . . . 10  |-  ( Ord  ( A  ^o  y
)  ->  ( x  e.  ( A  ^o  y
)  ->  suc  x  C_  ( A  ^o  y
) ) )
2926, 27, 28sylc 60 . . . . . . . . 9  |-  ( ( ( A  e.  ( On  \  2o )  /\  ( B  e.  C  /\  Lim  B
) )  /\  (
y  e.  B  /\  x  e.  ( A  ^o  y ) ) )  ->  suc  x  C_  ( A  ^o  y ) )
30 simpll 753 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( On  \  2o )  /\  ( B  e.  C  /\  Lim  B
) )  /\  (
y  e.  B  /\  x  e.  ( A  ^o  y ) ) )  ->  A  e.  ( On  \  2o ) )
31 oeordi 7128 . . . . . . . . . . 11  |-  ( ( B  e.  On  /\  A  e.  ( On  \  2o ) )  -> 
( y  e.  B  ->  ( A  ^o  y
)  e.  ( A  ^o  B ) ) )
3219, 30, 31syl2anc 661 . . . . . . . . . 10  |-  ( ( ( A  e.  ( On  \  2o )  /\  ( B  e.  C  /\  Lim  B
) )  /\  (
y  e.  B  /\  x  e.  ( A  ^o  y ) ) )  ->  ( y  e.  B  ->  ( A  ^o  y )  e.  ( A  ^o  B ) ) )
3320, 32mpd 15 . . . . . . . . 9  |-  ( ( ( A  e.  ( On  \  2o )  /\  ( B  e.  C  /\  Lim  B
) )  /\  (
y  e.  B  /\  x  e.  ( A  ^o  y ) ) )  ->  ( A  ^o  y )  e.  ( A  ^o  B ) )
34 onelon 4844 . . . . . . . . . . . 12  |-  ( ( ( A  ^o  y
)  e.  On  /\  x  e.  ( A  ^o  y ) )  ->  x  e.  On )
3524, 27, 34syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( On  \  2o )  /\  ( B  e.  C  /\  Lim  B
) )  /\  (
y  e.  B  /\  x  e.  ( A  ^o  y ) ) )  ->  x  e.  On )
36 suceloni 6526 . . . . . . . . . . 11  |-  ( x  e.  On  ->  suc  x  e.  On )
3735, 36syl 16 . . . . . . . . . 10  |-  ( ( ( A  e.  ( On  \  2o )  /\  ( B  e.  C  /\  Lim  B
) )  /\  (
y  e.  B  /\  x  e.  ( A  ^o  y ) ) )  ->  suc  x  e.  On )
384adantr 465 . . . . . . . . . 10  |-  ( ( ( A  e.  ( On  \  2o )  /\  ( B  e.  C  /\  Lim  B
) )  /\  (
y  e.  B  /\  x  e.  ( A  ^o  y ) ) )  ->  ( A  ^o  B )  e.  On )
39 ontr2 4866 . . . . . . . . . 10  |-  ( ( suc  x  e.  On  /\  ( A  ^o  B
)  e.  On )  ->  ( ( suc  x  C_  ( A  ^o  y )  /\  ( A  ^o  y )  e.  ( A  ^o  B
) )  ->  suc  x  e.  ( A  ^o  B ) ) )
4037, 38, 39syl2anc 661 . . . . . . . . 9  |-  ( ( ( A  e.  ( On  \  2o )  /\  ( B  e.  C  /\  Lim  B
) )  /\  (
y  e.  B  /\  x  e.  ( A  ^o  y ) ) )  ->  ( ( suc  x  C_  ( A  ^o  y )  /\  ( A  ^o  y )  e.  ( A  ^o  B
) )  ->  suc  x  e.  ( A  ^o  B ) ) )
4129, 33, 40mp2and 679 . . . . . . . 8  |-  ( ( ( A  e.  ( On  \  2o )  /\  ( B  e.  C  /\  Lim  B
) )  /\  (
y  e.  B  /\  x  e.  ( A  ^o  y ) ) )  ->  suc  x  e.  ( A  ^o  B ) )
4241expr 615 . . . . . . 7  |-  ( ( ( A  e.  ( On  \  2o )  /\  ( B  e.  C  /\  Lim  B
) )  /\  y  e.  B )  ->  (
x  e.  ( A  ^o  y )  ->  suc  x  e.  ( A  ^o  B ) ) )
4317, 42sylan2 474 . . . . . 6  |-  ( ( ( A  e.  ( On  \  2o )  /\  ( B  e.  C  /\  Lim  B
) )  /\  y  e.  ( B  \  1o ) )  ->  (
x  e.  ( A  ^o  y )  ->  suc  x  e.  ( A  ^o  B ) ) )
4443rexlimdva 2939 . . . . 5  |-  ( ( A  e.  ( On 
\  2o )  /\  ( B  e.  C  /\  Lim  B ) )  ->  ( E. y  e.  ( B  \  1o ) x  e.  ( A  ^o  y )  ->  suc  x  e.  ( A  ^o  B ) ) )
4516, 44syl5bi 217 . . . 4  |-  ( ( A  e.  ( On 
\  2o )  /\  ( B  e.  C  /\  Lim  B ) )  ->  ( x  e. 
U_ y  e.  ( B  \  1o ) ( A  ^o  y
)  ->  suc  x  e.  ( A  ^o  B
) ) )
4615, 45sylbid 215 . . 3  |-  ( ( A  e.  ( On 
\  2o )  /\  ( B  e.  C  /\  Lim  B ) )  ->  ( x  e.  ( A  ^o  B
)  ->  suc  x  e.  ( A  ^o  B
) ) )
4746ralrimiv 2820 . 2  |-  ( ( A  e.  ( On 
\  2o )  /\  ( B  e.  C  /\  Lim  B ) )  ->  A. x  e.  ( A  ^o  B ) suc  x  e.  ( A  ^o  B ) )
48 dflim4 6561 . 2  |-  ( Lim  ( A  ^o  B
)  <->  ( Ord  ( A  ^o  B )  /\  (/) 
e.  ( A  ^o  B )  /\  A. x  e.  ( A  ^o  B ) suc  x  e.  ( A  ^o  B
) ) )
496, 12, 47, 48syl3anbrc 1172 1  |-  ( ( A  e.  ( On 
\  2o )  /\  ( B  e.  C  /\  Lim  B ) )  ->  Lim  ( A  ^o  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   A.wral 2795   E.wrex 2796    \ cdif 3425    C_ wss 3428   (/)c0 3737   U_ciun 4271   Ord word 4818   Oncon0 4819   Lim wlim 4820   suc csuc 4821  (class class class)co 6192   1oc1o 7015   2oc2o 7016    ^o coe 7021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4503  ax-sep 4513  ax-nul 4521  ax-pow 4570  ax-pr 4631  ax-un 6474
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-reu 2802  df-rab 2804  df-v 3072  df-sbc 3287  df-csb 3389  df-dif 3431  df-un 3433  df-in 3435  df-ss 3442  df-pss 3444  df-nul 3738  df-if 3892  df-pw 3962  df-sn 3978  df-pr 3980  df-tp 3982  df-op 3984  df-uni 4192  df-iun 4273  df-br 4393  df-opab 4451  df-mpt 4452  df-tr 4486  df-eprel 4732  df-id 4736  df-po 4741  df-so 4742  df-fr 4779  df-we 4781  df-ord 4822  df-on 4823  df-lim 4824  df-suc 4825  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5481  df-fun 5520  df-fn 5521  df-f 5522  df-f1 5523  df-fo 5524  df-f1o 5525  df-fv 5526  df-ov 6195  df-oprab 6196  df-mpt2 6197  df-om 6579  df-recs 6934  df-rdg 6968  df-1o 7022  df-2o 7023  df-oadd 7026  df-omul 7027  df-oexp 7028
This theorem is referenced by:  oaabs2  7186  omabs  7188
  Copyright terms: Public domain W3C validator