MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oelim2 Structured version   Unicode version

Theorem oelim2 7304
Description: Ordinal exponentiation with a limit exponent. Part of Exercise 4.36 of [Mendelson] p. 250. (Contributed by NM, 6-Jan-2005.)
Assertion
Ref Expression
oelim2  |-  ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  ->  ( A  ^o  B )  =  U_ x  e.  ( B  \  1o ) ( A  ^o  x ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    C( x)

Proof of Theorem oelim2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 limelon 5505 . . . . . 6  |-  ( ( B  e.  C  /\  Lim  B )  ->  B  e.  On )
2 0ellim 5504 . . . . . . 7  |-  ( Lim 
B  ->  (/)  e.  B
)
32adantl 467 . . . . . 6  |-  ( ( B  e.  C  /\  Lim  B )  ->  (/)  e.  B
)
4 oe0m1 7231 . . . . . . 7  |-  ( B  e.  On  ->  ( (/) 
e.  B  <->  ( (/)  ^o  B
)  =  (/) ) )
54biimpa 486 . . . . . 6  |-  ( ( B  e.  On  /\  (/) 
e.  B )  -> 
( (/)  ^o  B )  =  (/) )
61, 3, 5syl2anc 665 . . . . 5  |-  ( ( B  e.  C  /\  Lim  B )  ->  ( (/) 
^o  B )  =  (/) )
7 eldif 3452 . . . . . . . . 9  |-  ( x  e.  ( B  \  1o )  <->  ( x  e.  B  /\  -.  x  e.  1o ) )
8 limord 5501 . . . . . . . . . . . 12  |-  ( Lim 
B  ->  Ord  B )
9 ordelon 5466 . . . . . . . . . . . 12  |-  ( ( Ord  B  /\  x  e.  B )  ->  x  e.  On )
108, 9sylan 473 . . . . . . . . . . 11  |-  ( ( Lim  B  /\  x  e.  B )  ->  x  e.  On )
11 on0eln0 5497 . . . . . . . . . . . . 13  |-  ( x  e.  On  ->  ( (/) 
e.  x  <->  x  =/=  (/) ) )
12 el1o 7209 . . . . . . . . . . . . . 14  |-  ( x  e.  1o  <->  x  =  (/) )
1312necon3bbii 2692 . . . . . . . . . . . . 13  |-  ( -.  x  e.  1o  <->  x  =/=  (/) )
1411, 13syl6bbr 266 . . . . . . . . . . . 12  |-  ( x  e.  On  ->  ( (/) 
e.  x  <->  -.  x  e.  1o ) )
15 oe0m1 7231 . . . . . . . . . . . . 13  |-  ( x  e.  On  ->  ( (/) 
e.  x  <->  ( (/)  ^o  x
)  =  (/) ) )
1615biimpd 210 . . . . . . . . . . . 12  |-  ( x  e.  On  ->  ( (/) 
e.  x  ->  ( (/) 
^o  x )  =  (/) ) )
1714, 16sylbird 238 . . . . . . . . . . 11  |-  ( x  e.  On  ->  ( -.  x  e.  1o  ->  ( (/)  ^o  x
)  =  (/) ) )
1810, 17syl 17 . . . . . . . . . 10  |-  ( ( Lim  B  /\  x  e.  B )  ->  ( -.  x  e.  1o  ->  ( (/)  ^o  x
)  =  (/) ) )
1918impr 623 . . . . . . . . 9  |-  ( ( Lim  B  /\  (
x  e.  B  /\  -.  x  e.  1o ) )  ->  ( (/) 
^o  x )  =  (/) )
207, 19sylan2b 477 . . . . . . . 8  |-  ( ( Lim  B  /\  x  e.  ( B  \  1o ) )  ->  ( (/) 
^o  x )  =  (/) )
2120iuneq2dv 4324 . . . . . . 7  |-  ( Lim 
B  ->  U_ x  e.  ( B  \  1o ) ( (/)  ^o  x
)  =  U_ x  e.  ( B  \  1o ) (/) )
22 df-1o 7190 . . . . . . . . . . 11  |-  1o  =  suc  (/)
23 limsuc 6690 . . . . . . . . . . . 12  |-  ( Lim 
B  ->  ( (/)  e.  B  <->  suc  (/)  e.  B ) )
242, 23mpbid 213 . . . . . . . . . . 11  |-  ( Lim 
B  ->  suc  (/)  e.  B
)
2522, 24syl5eqel 2521 . . . . . . . . . 10  |-  ( Lim 
B  ->  1o  e.  B )
26 1on 7197 . . . . . . . . . . 11  |-  1o  e.  On
2726onirri 5548 . . . . . . . . . 10  |-  -.  1o  e.  1o
2825, 27jctir 540 . . . . . . . . 9  |-  ( Lim 
B  ->  ( 1o  e.  B  /\  -.  1o  e.  1o ) )
29 eldif 3452 . . . . . . . . 9  |-  ( 1o  e.  ( B  \  1o )  <->  ( 1o  e.  B  /\  -.  1o  e.  1o ) )
3028, 29sylibr 215 . . . . . . . 8  |-  ( Lim 
B  ->  1o  e.  ( B  \  1o ) )
31 ne0i 3773 . . . . . . . 8  |-  ( 1o  e.  ( B  \  1o )  ->  ( B 
\  1o )  =/=  (/) )
32 iunconst 4311 . . . . . . . 8  |-  ( ( B  \  1o )  =/=  (/)  ->  U_ x  e.  ( B  \  1o ) (/)  =  (/) )
3330, 31, 323syl 18 . . . . . . 7  |-  ( Lim 
B  ->  U_ x  e.  ( B  \  1o ) (/)  =  (/) )
3421, 33eqtrd 2470 . . . . . 6  |-  ( Lim 
B  ->  U_ x  e.  ( B  \  1o ) ( (/)  ^o  x
)  =  (/) )
3534adantl 467 . . . . 5  |-  ( ( B  e.  C  /\  Lim  B )  ->  U_ x  e.  ( B  \  1o ) ( (/)  ^o  x
)  =  (/) )
366, 35eqtr4d 2473 . . . 4  |-  ( ( B  e.  C  /\  Lim  B )  ->  ( (/) 
^o  B )  = 
U_ x  e.  ( B  \  1o ) ( (/)  ^o  x
) )
37 oveq1 6312 . . . . 5  |-  ( A  =  (/)  ->  ( A  ^o  B )  =  ( (/)  ^o  B ) )
38 oveq1 6312 . . . . . 6  |-  ( A  =  (/)  ->  ( A  ^o  x )  =  ( (/)  ^o  x
) )
3938iuneq2d 4329 . . . . 5  |-  ( A  =  (/)  ->  U_ x  e.  ( B  \  1o ) ( A  ^o  x )  =  U_ x  e.  ( B  \  1o ) ( (/)  ^o  x ) )
4037, 39eqeq12d 2451 . . . 4  |-  ( A  =  (/)  ->  ( ( A  ^o  B )  =  U_ x  e.  ( B  \  1o ) ( A  ^o  x )  <->  ( (/)  ^o  B
)  =  U_ x  e.  ( B  \  1o ) ( (/)  ^o  x
) ) )
4136, 40syl5ibr 224 . . 3  |-  ( A  =  (/)  ->  ( ( B  e.  C  /\  Lim  B )  ->  ( A  ^o  B )  = 
U_ x  e.  ( B  \  1o ) ( A  ^o  x
) ) )
4241impcom 431 . 2  |-  ( ( ( B  e.  C  /\  Lim  B )  /\  A  =  (/) )  -> 
( A  ^o  B
)  =  U_ x  e.  ( B  \  1o ) ( A  ^o  x ) )
43 oelim 7244 . . 3  |-  ( ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  /\  (/)  e.  A )  ->  ( A  ^o  B )  =  U_ y  e.  B  ( A  ^o  y ) )
44 limsuc 6690 . . . . . . . . . . . . 13  |-  ( Lim 
B  ->  ( y  e.  B  <->  suc  y  e.  B
) )
4544biimpa 486 . . . . . . . . . . . 12  |-  ( ( Lim  B  /\  y  e.  B )  ->  suc  y  e.  B )
46 nsuceq0 5522 . . . . . . . . . . . . 13  |-  suc  y  =/=  (/)
4746a1i 11 . . . . . . . . . . . 12  |-  ( ( Lim  B  /\  y  e.  B )  ->  suc  y  =/=  (/) )
48 dif1o 7210 . . . . . . . . . . . 12  |-  ( suc  y  e.  ( B 
\  1o )  <->  ( suc  y  e.  B  /\  suc  y  =/=  (/) ) )
4945, 47, 48sylanbrc 668 . . . . . . . . . . 11  |-  ( ( Lim  B  /\  y  e.  B )  ->  suc  y  e.  ( B  \  1o ) )
5049ex 435 . . . . . . . . . 10  |-  ( Lim 
B  ->  ( y  e.  B  ->  suc  y  e.  ( B  \  1o ) ) )
5150ad2antlr 731 . . . . . . . . 9  |-  ( ( ( A  e.  On  /\ 
Lim  B )  /\  (/) 
e.  A )  -> 
( y  e.  B  ->  suc  y  e.  ( B  \  1o ) ) )
52 sssucid 5519 . . . . . . . . . . 11  |-  y  C_  suc  y
53 ordelon 5466 . . . . . . . . . . . . . . . . 17  |-  ( ( Ord  B  /\  y  e.  B )  ->  y  e.  On )
548, 53sylan 473 . . . . . . . . . . . . . . . 16  |-  ( ( Lim  B  /\  y  e.  B )  ->  y  e.  On )
55 suceloni 6654 . . . . . . . . . . . . . . . 16  |-  ( y  e.  On  ->  suc  y  e.  On )
5654, 55jccir 541 . . . . . . . . . . . . . . 15  |-  ( ( Lim  B  /\  y  e.  B )  ->  (
y  e.  On  /\  suc  y  e.  On ) )
57 id 23 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  On  /\  suc  y  e.  On  /\  A  e.  On )  ->  ( y  e.  On  /\  suc  y  e.  On  /\  A  e.  On ) )
58573expa 1205 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  e.  On  /\ 
suc  y  e.  On )  /\  A  e.  On )  ->  ( y  e.  On  /\  suc  y  e.  On  /\  A  e.  On ) )
5958ancoms 454 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  On  /\  ( y  e.  On  /\ 
suc  y  e.  On ) )  ->  (
y  e.  On  /\  suc  y  e.  On  /\  A  e.  On ) )
6056, 59sylan2 476 . . . . . . . . . . . . . 14  |-  ( ( A  e.  On  /\  ( Lim  B  /\  y  e.  B ) )  -> 
( y  e.  On  /\ 
suc  y  e.  On  /\  A  e.  On ) )
6160anassrs 652 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  On  /\ 
Lim  B )  /\  y  e.  B )  ->  ( y  e.  On  /\ 
suc  y  e.  On  /\  A  e.  On ) )
62 oewordi 7300 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  On  /\ 
suc  y  e.  On  /\  A  e.  On )  /\  (/)  e.  A )  ->  ( y  C_  suc  y  ->  ( A  ^o  y )  C_  ( A  ^o  suc  y
) ) )
6361, 62sylan 473 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  On  /\  Lim  B
)  /\  y  e.  B )  /\  (/)  e.  A
)  ->  ( y  C_ 
suc  y  ->  ( A  ^o  y )  C_  ( A  ^o  suc  y
) ) )
6463an32s 811 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  On  /\  Lim  B
)  /\  (/)  e.  A
)  /\  y  e.  B )  ->  (
y  C_  suc  y  -> 
( A  ^o  y
)  C_  ( A  ^o  suc  y ) ) )
6552, 64mpi 21 . . . . . . . . . 10  |-  ( ( ( ( A  e.  On  /\  Lim  B
)  /\  (/)  e.  A
)  /\  y  e.  B )  ->  ( A  ^o  y )  C_  ( A  ^o  suc  y
) )
6665ex 435 . . . . . . . . 9  |-  ( ( ( A  e.  On  /\ 
Lim  B )  /\  (/) 
e.  A )  -> 
( y  e.  B  ->  ( A  ^o  y
)  C_  ( A  ^o  suc  y ) ) )
6751, 66jcad 535 . . . . . . . 8  |-  ( ( ( A  e.  On  /\ 
Lim  B )  /\  (/) 
e.  A )  -> 
( y  e.  B  ->  ( suc  y  e.  ( B  \  1o )  /\  ( A  ^o  y )  C_  ( A  ^o  suc  y ) ) ) )
68 oveq2 6313 . . . . . . . . . 10  |-  ( x  =  suc  y  -> 
( A  ^o  x
)  =  ( A  ^o  suc  y ) )
6968sseq2d 3498 . . . . . . . . 9  |-  ( x  =  suc  y  -> 
( ( A  ^o  y )  C_  ( A  ^o  x )  <->  ( A  ^o  y )  C_  ( A  ^o  suc  y ) ) )
7069rspcev 3188 . . . . . . . 8  |-  ( ( suc  y  e.  ( B  \  1o )  /\  ( A  ^o  y )  C_  ( A  ^o  suc  y ) )  ->  E. x  e.  ( B  \  1o ) ( A  ^o  y )  C_  ( A  ^o  x ) )
7167, 70syl6 34 . . . . . . 7  |-  ( ( ( A  e.  On  /\ 
Lim  B )  /\  (/) 
e.  A )  -> 
( y  e.  B  ->  E. x  e.  ( B  \  1o ) ( A  ^o  y
)  C_  ( A  ^o  x ) ) )
7271ralrimiv 2844 . . . . . 6  |-  ( ( ( A  e.  On  /\ 
Lim  B )  /\  (/) 
e.  A )  ->  A. y  e.  B  E. x  e.  ( B  \  1o ) ( A  ^o  y ) 
C_  ( A  ^o  x ) )
73 iunss2 4347 . . . . . 6  |-  ( A. y  e.  B  E. x  e.  ( B  \  1o ) ( A  ^o  y )  C_  ( A  ^o  x
)  ->  U_ y  e.  B  ( A  ^o  y )  C_  U_ x  e.  ( B  \  1o ) ( A  ^o  x ) )
7472, 73syl 17 . . . . 5  |-  ( ( ( A  e.  On  /\ 
Lim  B )  /\  (/) 
e.  A )  ->  U_ y  e.  B  ( A  ^o  y
)  C_  U_ x  e.  ( B  \  1o ) ( A  ^o  x ) )
75 difss 3598 . . . . . . . 8  |-  ( B 
\  1o )  C_  B
76 iunss1 4314 . . . . . . . 8  |-  ( ( B  \  1o ) 
C_  B  ->  U_ x  e.  ( B  \  1o ) ( A  ^o  x )  C_  U_ x  e.  B  ( A  ^o  x ) )
7775, 76ax-mp 5 . . . . . . 7  |-  U_ x  e.  ( B  \  1o ) ( A  ^o  x )  C_  U_ x  e.  B  ( A  ^o  x )
78 oveq2 6313 . . . . . . . 8  |-  ( x  =  y  ->  ( A  ^o  x )  =  ( A  ^o  y
) )
7978cbviunv 4341 . . . . . . 7  |-  U_ x  e.  B  ( A  ^o  x )  =  U_ y  e.  B  ( A  ^o  y )
8077, 79sseqtri 3502 . . . . . 6  |-  U_ x  e.  ( B  \  1o ) ( A  ^o  x )  C_  U_ y  e.  B  ( A  ^o  y )
8180a1i 11 . . . . 5  |-  ( ( ( A  e.  On  /\ 
Lim  B )  /\  (/) 
e.  A )  ->  U_ x  e.  ( B  \  1o ) ( A  ^o  x ) 
C_  U_ y  e.  B  ( A  ^o  y
) )
8274, 81eqssd 3487 . . . 4  |-  ( ( ( A  e.  On  /\ 
Lim  B )  /\  (/) 
e.  A )  ->  U_ y  e.  B  ( A  ^o  y
)  =  U_ x  e.  ( B  \  1o ) ( A  ^o  x ) )
8382adantlrl 724 . . 3  |-  ( ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  /\  (/)  e.  A )  ->  U_ y  e.  B  ( A  ^o  y
)  =  U_ x  e.  ( B  \  1o ) ( A  ^o  x ) )
8443, 83eqtrd 2470 . 2  |-  ( ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  /\  (/)  e.  A )  ->  ( A  ^o  B )  =  U_ x  e.  ( B  \  1o ) ( A  ^o  x ) )
8542, 84oe0lem 7223 1  |-  ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  ->  ( A  ^o  B )  =  U_ x  e.  ( B  \  1o ) ( A  ^o  x ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1870    =/= wne 2625   A.wral 2782   E.wrex 2783    \ cdif 3439    C_ wss 3442   (/)c0 3767   U_ciun 4302   Ord word 5441   Oncon0 5442   Lim wlim 5443   suc csuc 5444  (class class class)co 6305   1oc1o 7183    ^o coe 7189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-reu 2789  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-1o 7190  df-2o 7191  df-oadd 7194  df-omul 7195  df-oexp 7196
This theorem is referenced by:  oelimcl  7309  oaabs2  7354  omabs  7356
  Copyright terms: Public domain W3C validator