MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oe1m Structured version   Unicode version

Theorem oe1m 7186
Description: Ordinal exponentiation with a mantissa of 1. Proposition 8.31(3) of [TakeutiZaring] p. 67. (Contributed by NM, 2-Jan-2005.)
Assertion
Ref Expression
oe1m  |-  ( A  e.  On  ->  ( 1o  ^o  A )  =  1o )

Proof of Theorem oe1m
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6278 . . 3  |-  ( x  =  (/)  ->  ( 1o 
^o  x )  =  ( 1o  ^o  (/) ) )
21eqeq1d 2456 . 2  |-  ( x  =  (/)  ->  ( ( 1o  ^o  x )  =  1o  <->  ( 1o  ^o  (/) )  =  1o ) )
3 oveq2 6278 . . 3  |-  ( x  =  y  ->  ( 1o  ^o  x )  =  ( 1o  ^o  y
) )
43eqeq1d 2456 . 2  |-  ( x  =  y  ->  (
( 1o  ^o  x
)  =  1o  <->  ( 1o  ^o  y )  =  1o ) )
5 oveq2 6278 . . 3  |-  ( x  =  suc  y  -> 
( 1o  ^o  x
)  =  ( 1o 
^o  suc  y )
)
65eqeq1d 2456 . 2  |-  ( x  =  suc  y  -> 
( ( 1o  ^o  x )  =  1o  <->  ( 1o  ^o  suc  y
)  =  1o ) )
7 oveq2 6278 . . 3  |-  ( x  =  A  ->  ( 1o  ^o  x )  =  ( 1o  ^o  A
) )
87eqeq1d 2456 . 2  |-  ( x  =  A  ->  (
( 1o  ^o  x
)  =  1o  <->  ( 1o  ^o  A )  =  1o ) )
9 1on 7129 . . 3  |-  1o  e.  On
10 oe0 7164 . . 3  |-  ( 1o  e.  On  ->  ( 1o  ^o  (/) )  =  1o )
119, 10ax-mp 5 . 2  |-  ( 1o 
^o  (/) )  =  1o
12 oesuc 7169 . . . . 5  |-  ( ( 1o  e.  On  /\  y  e.  On )  ->  ( 1o  ^o  suc  y )  =  ( ( 1o  ^o  y
)  .o  1o ) )
139, 12mpan 668 . . . 4  |-  ( y  e.  On  ->  ( 1o  ^o  suc  y )  =  ( ( 1o 
^o  y )  .o  1o ) )
14 oveq1 6277 . . . . 5  |-  ( ( 1o  ^o  y )  =  1o  ->  (
( 1o  ^o  y
)  .o  1o )  =  ( 1o  .o  1o ) )
15 om1 7183 . . . . . 6  |-  ( 1o  e.  On  ->  ( 1o  .o  1o )  =  1o )
169, 15ax-mp 5 . . . . 5  |-  ( 1o 
.o  1o )  =  1o
1714, 16syl6eq 2511 . . . 4  |-  ( ( 1o  ^o  y )  =  1o  ->  (
( 1o  ^o  y
)  .o  1o )  =  1o )
1813, 17sylan9eq 2515 . . 3  |-  ( ( y  e.  On  /\  ( 1o  ^o  y
)  =  1o )  ->  ( 1o  ^o  suc  y )  =  1o )
1918ex 432 . 2  |-  ( y  e.  On  ->  (
( 1o  ^o  y
)  =  1o  ->  ( 1o  ^o  suc  y
)  =  1o ) )
20 iuneq2 4332 . . 3  |-  ( A. y  e.  x  ( 1o  ^o  y )  =  1o  ->  U_ y  e.  x  ( 1o  ^o  y )  =  U_ y  e.  x  1o )
21 vex 3109 . . . . . 6  |-  x  e. 
_V
22 0lt1o 7146 . . . . . . . 8  |-  (/)  e.  1o
23 oelim 7176 . . . . . . . 8  |-  ( ( ( 1o  e.  On  /\  ( x  e.  _V  /\ 
Lim  x ) )  /\  (/)  e.  1o )  ->  ( 1o  ^o  x )  =  U_ y  e.  x  ( 1o  ^o  y ) )
2422, 23mpan2 669 . . . . . . 7  |-  ( ( 1o  e.  On  /\  ( x  e.  _V  /\ 
Lim  x ) )  ->  ( 1o  ^o  x )  =  U_ y  e.  x  ( 1o  ^o  y ) )
259, 24mpan 668 . . . . . 6  |-  ( ( x  e.  _V  /\  Lim  x )  ->  ( 1o  ^o  x )  = 
U_ y  e.  x  ( 1o  ^o  y
) )
2621, 25mpan 668 . . . . 5  |-  ( Lim  x  ->  ( 1o  ^o  x )  =  U_ y  e.  x  ( 1o  ^o  y ) )
2726eqeq1d 2456 . . . 4  |-  ( Lim  x  ->  ( ( 1o  ^o  x )  =  1o  <->  U_ y  e.  x  ( 1o  ^o  y
)  =  1o ) )
28 0ellim 4929 . . . . . 6  |-  ( Lim  x  ->  (/)  e.  x
)
29 ne0i 3789 . . . . . 6  |-  ( (/)  e.  x  ->  x  =/=  (/) )
30 iunconst 4324 . . . . . 6  |-  ( x  =/=  (/)  ->  U_ y  e.  x  1o  =  1o )
3128, 29, 303syl 20 . . . . 5  |-  ( Lim  x  ->  U_ y  e.  x  1o  =  1o )
3231eqeq2d 2468 . . . 4  |-  ( Lim  x  ->  ( U_ y  e.  x  ( 1o  ^o  y )  = 
U_ y  e.  x  1o 
<-> 
U_ y  e.  x  ( 1o  ^o  y
)  =  1o ) )
3327, 32bitr4d 256 . . 3  |-  ( Lim  x  ->  ( ( 1o  ^o  x )  =  1o  <->  U_ y  e.  x  ( 1o  ^o  y
)  =  U_ y  e.  x  1o )
)
3420, 33syl5ibr 221 . 2  |-  ( Lim  x  ->  ( A. y  e.  x  ( 1o  ^o  y )  =  1o  ->  ( 1o  ^o  x )  =  1o ) )
352, 4, 6, 8, 11, 19, 34tfinds 6667 1  |-  ( A  e.  On  ->  ( 1o  ^o  A )  =  1o )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1398    e. wcel 1823    =/= wne 2649   A.wral 2804   _Vcvv 3106   (/)c0 3783   U_ciun 4315   Oncon0 4867   Lim wlim 4868   suc csuc 4869  (class class class)co 6270   1oc1o 7115    .o comu 7120    ^o coe 7121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-recs 7034  df-rdg 7068  df-1o 7122  df-oadd 7126  df-omul 7127  df-oexp 7128
This theorem is referenced by:  oewordi  7232  oeoe  7240  cantnflem2  8100
  Copyright terms: Public domain W3C validator