MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odzdvdsOLD Structured version   Visualization version   Unicode version

Theorem odzdvdsOLD 14801
Description: The only powers of  A that are congruent to  1 are the multiples of the order of  A. (Contributed by Mario Carneiro, 28-Feb-2014.) Obsolete version of odzdvds 14795 as of 26-Sep-2020. (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
odzdvdsOLD  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( N  ||  (
( A ^ K
)  -  1 )  <-> 
( ( odZ `  N ) `  A
)  ||  K )
)

Proof of Theorem odzdvdsOLD
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 nn0re 10912 . . . . . . . . 9  |-  ( K  e.  NN0  ->  K  e.  RR )
21adantl 472 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  K  e.  RR )
3 odzclOLD 14799 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  (
( odZ `  N ) `  A
)  e.  NN )
43adantr 471 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( odZ `  N ) `  A
)  e.  NN )
54nnrpd 11373 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( odZ `  N ) `  A
)  e.  RR+ )
6 modlt 12145 . . . . . . . 8  |-  ( ( K  e.  RR  /\  ( ( odZ `  N ) `  A
)  e.  RR+ )  ->  ( K  mod  (
( odZ `  N ) `  A
) )  <  (
( odZ `  N ) `  A
) )
72, 5, 6syl2anc 671 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( K  mod  (
( odZ `  N ) `  A
) )  <  (
( odZ `  N ) `  A
) )
8 nn0z 10994 . . . . . . . . . . 11  |-  ( K  e.  NN0  ->  K  e.  ZZ )
98adantl 472 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  K  e.  ZZ )
109, 4zmodcld 12155 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( K  mod  (
( odZ `  N ) `  A
) )  e.  NN0 )
1110nn0red 10960 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( K  mod  (
( odZ `  N ) `  A
) )  e.  RR )
124nnred 10657 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( odZ `  N ) `  A
)  e.  RR )
1311, 12ltnled 9813 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( K  mod  ( ( odZ `  N ) `  A
) )  <  (
( odZ `  N ) `  A
)  <->  -.  ( ( odZ `  N ) `
 A )  <_ 
( K  mod  (
( odZ `  N ) `  A
) ) ) )
147, 13mpbid 215 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  -.  ( ( odZ `  N ) `  A
)  <_  ( K  mod  ( ( odZ `  N ) `  A
) ) )
15 oveq2 6328 . . . . . . . . . . . 12  |-  ( n  =  ( K  mod  ( ( odZ `  N ) `  A
) )  ->  ( A ^ n )  =  ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) ) )
1615oveq1d 6335 . . . . . . . . . . 11  |-  ( n  =  ( K  mod  ( ( odZ `  N ) `  A
) )  ->  (
( A ^ n
)  -  1 )  =  ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A
) ) )  - 
1 ) )
1716breq2d 4430 . . . . . . . . . 10  |-  ( n  =  ( K  mod  ( ( odZ `  N ) `  A
) )  ->  ( N  ||  ( ( A ^ n )  - 
1 )  <->  N  ||  (
( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 ) ) )
1817elrab 3208 . . . . . . . . 9  |-  ( ( K  mod  ( ( odZ `  N
) `  A )
)  e.  { n  e.  NN  |  N  ||  ( ( A ^
n )  -  1 ) }  <->  ( ( K  mod  ( ( odZ `  N ) `  A ) )  e.  NN  /\  N  ||  ( ( A ^
( K  mod  (
( odZ `  N ) `  A
) ) )  - 
1 ) ) )
19 ssrab2 3526 . . . . . . . . . . 11  |-  { n  e.  NN  |  N  ||  ( ( A ^
n )  -  1 ) }  C_  NN
20 nnuz 11228 . . . . . . . . . . 11  |-  NN  =  ( ZZ>= `  1 )
2119, 20sseqtri 3476 . . . . . . . . . 10  |-  { n  e.  NN  |  N  ||  ( ( A ^
n )  -  1 ) }  C_  ( ZZ>=
`  1 )
22 infmssuzleOLD 11280 . . . . . . . . . 10  |-  ( ( { n  e.  NN  |  N  ||  ( ( A ^ n )  -  1 ) } 
C_  ( ZZ>= `  1
)  /\  ( K  mod  ( ( odZ `  N ) `  A
) )  e.  {
n  e.  NN  |  N  ||  ( ( A ^ n )  - 
1 ) } )  ->  sup ( { n  e.  NN  |  N  ||  ( ( A ^
n )  -  1 ) } ,  RR ,  `'  <  )  <_ 
( K  mod  (
( odZ `  N ) `  A
) ) )
2321, 22mpan 681 . . . . . . . . 9  |-  ( ( K  mod  ( ( odZ `  N
) `  A )
)  e.  { n  e.  NN  |  N  ||  ( ( A ^
n )  -  1 ) }  ->  sup ( { n  e.  NN  |  N  ||  ( ( A ^ n )  -  1 ) } ,  RR ,  `'  <  )  <_  ( K  mod  ( ( odZ `  N ) `  A
) ) )
2418, 23sylbir 218 . . . . . . . 8  |-  ( ( ( K  mod  (
( odZ `  N ) `  A
) )  e.  NN  /\  N  ||  ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 ) )  ->  sup ( { n  e.  NN  |  N  ||  ( ( A ^
n )  -  1 ) } ,  RR ,  `'  <  )  <_ 
( K  mod  (
( odZ `  N ) `  A
) ) )
2524ancoms 459 . . . . . . 7  |-  ( ( N  ||  ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 )  /\  ( K  mod  ( ( odZ `  N
) `  A )
)  e.  NN )  ->  sup ( { n  e.  NN  |  N  ||  ( ( A ^
n )  -  1 ) } ,  RR ,  `'  <  )  <_ 
( K  mod  (
( odZ `  N ) `  A
) ) )
26 odzvalOLD 14797 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  (
( odZ `  N ) `  A
)  =  sup ( { n  e.  NN  |  N  ||  ( ( A ^ n )  -  1 ) } ,  RR ,  `'  <  ) )
2726adantr 471 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( odZ `  N ) `  A
)  =  sup ( { n  e.  NN  |  N  ||  ( ( A ^ n )  -  1 ) } ,  RR ,  `'  <  ) )
2827breq1d 4428 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( odZ `  N ) `  A )  <_  ( K  mod  ( ( odZ `  N ) `  A ) )  <->  sup ( { n  e.  NN  |  N  ||  ( ( A ^ n )  -  1 ) } ,  RR ,  `'  <  )  <_  ( K  mod  ( ( odZ `  N ) `  A
) ) ) )
2925, 28syl5ibr 229 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( N  ||  ( ( A ^
( K  mod  (
( odZ `  N ) `  A
) ) )  - 
1 )  /\  ( K  mod  ( ( odZ `  N ) `  A ) )  e.  NN )  ->  (
( odZ `  N ) `  A
)  <_  ( K  mod  ( ( odZ `  N ) `  A
) ) ) )
3014, 29mtod 182 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  -.  ( N  ||  (
( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 )  /\  ( K  mod  ( ( odZ `  N
) `  A )
)  e.  NN ) )
31 imnan 428 . . . . 5  |-  ( ( N  ||  ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 )  ->  -.  ( K  mod  (
( odZ `  N ) `  A
) )  e.  NN ) 
<->  -.  ( N  ||  ( ( A ^
( K  mod  (
( odZ `  N ) `  A
) ) )  - 
1 )  /\  ( K  mod  ( ( odZ `  N ) `  A ) )  e.  NN ) )
3230, 31sylibr 217 . . . 4  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( N  ||  (
( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 )  ->  -.  ( K  mod  (
( odZ `  N ) `  A
) )  e.  NN ) )
33 elnn0 10905 . . . . . 6  |-  ( ( K  mod  ( ( odZ `  N
) `  A )
)  e.  NN0  <->  ( ( K  mod  ( ( odZ `  N ) `  A ) )  e.  NN  \/  ( K  mod  ( ( odZ `  N ) `  A ) )  =  0 ) )
3410, 33sylib 201 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( K  mod  ( ( odZ `  N ) `  A
) )  e.  NN  \/  ( K  mod  (
( odZ `  N ) `  A
) )  =  0 ) )
3534ord 383 . . . 4  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( -.  ( K  mod  ( ( odZ `  N ) `  A ) )  e.  NN  ->  ( K  mod  ( ( odZ `  N ) `  A
) )  =  0 ) )
3632, 35syld 45 . . 3  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( N  ||  (
( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 )  -> 
( K  mod  (
( odZ `  N ) `  A
) )  =  0 ) )
37 simpl1 1017 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  N  e.  NN )
3837nnzd 11073 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  N  e.  ZZ )
39 dvds0 14373 . . . . . 6  |-  ( N  e.  ZZ  ->  N  ||  0 )
4038, 39syl 17 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  N  ||  0 )
41 simpl2 1018 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  A  e.  ZZ )
4241zcnd 11075 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  A  e.  CC )
4342exp0d 12448 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( A ^ 0 )  =  1 )
4443oveq1d 6335 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( A ^
0 )  -  1 )  =  ( 1  -  1 ) )
45 1m1e0 10711 . . . . . 6  |-  ( 1  -  1 )  =  0
4644, 45syl6eq 2512 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( A ^
0 )  -  1 )  =  0 )
4740, 46breqtrrd 4445 . . . 4  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  N  ||  ( ( A ^ 0 )  - 
1 ) )
48 oveq2 6328 . . . . . 6  |-  ( ( K  mod  ( ( odZ `  N
) `  A )
)  =  0  -> 
( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  =  ( A ^
0 ) )
4948oveq1d 6335 . . . . 5  |-  ( ( K  mod  ( ( odZ `  N
) `  A )
)  =  0  -> 
( ( A ^
( K  mod  (
( odZ `  N ) `  A
) ) )  - 
1 )  =  ( ( A ^ 0 )  -  1 ) )
5049breq2d 4430 . . . 4  |-  ( ( K  mod  ( ( odZ `  N
) `  A )
)  =  0  -> 
( N  ||  (
( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 )  <->  N  ||  (
( A ^ 0 )  -  1 ) ) )
5147, 50syl5ibrcom 230 . . 3  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( K  mod  ( ( odZ `  N ) `  A
) )  =  0  ->  N  ||  (
( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 ) ) )
5236, 51impbid 195 . 2  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( N  ||  (
( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 )  <->  ( K  mod  ( ( odZ `  N ) `  A
) )  =  0 ) )
534nnnn0d 10959 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( odZ `  N ) `  A
)  e.  NN0 )
542, 4nndivred 10691 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( K  /  (
( odZ `  N ) `  A
) )  e.  RR )
55 nn0ge0 10929 . . . . . . . . . . . 12  |-  ( K  e.  NN0  ->  0  <_  K )
5655adantl 472 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
0  <_  K )
574nngt0d 10686 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
0  <  ( ( odZ `  N ) `
 A ) )
58 ge0div 10505 . . . . . . . . . . . 12  |-  ( ( K  e.  RR  /\  ( ( odZ `  N ) `  A
)  e.  RR  /\  0  <  ( ( odZ `  N ) `  A ) )  -> 
( 0  <_  K  <->  0  <_  ( K  / 
( ( odZ `  N ) `  A
) ) ) )
592, 12, 57, 58syl3anc 1276 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( 0  <_  K  <->  0  <_  ( K  / 
( ( odZ `  N ) `  A
) ) ) )
6056, 59mpbid 215 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
0  <_  ( K  /  ( ( odZ `  N ) `  A ) ) )
61 flge0nn0 12092 . . . . . . . . . 10  |-  ( ( ( K  /  (
( odZ `  N ) `  A
) )  e.  RR  /\  0  <_  ( K  /  ( ( odZ `  N ) `  A ) ) )  ->  ( |_ `  ( K  /  (
( odZ `  N ) `  A
) ) )  e. 
NN0 )
6254, 60, 61syl2anc 671 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) )  e.  NN0 )
6353, 62nn0mulcld 10964 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( odZ `  N ) `  A )  x.  ( |_ `  ( K  / 
( ( odZ `  N ) `  A
) ) ) )  e.  NN0 )
64 zexpcl 12325 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( ( ( odZ `  N ) `  A )  x.  ( |_ `  ( K  / 
( ( odZ `  N ) `  A
) ) ) )  e.  NN0 )  -> 
( A ^ (
( ( odZ `  N ) `  A
)  x.  ( |_
`  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) )  e.  ZZ )
6541, 63, 64syl2anc 671 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( A ^ (
( ( odZ `  N ) `  A
)  x.  ( |_
`  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) )  e.  ZZ )
6665zred 11074 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( A ^ (
( ( odZ `  N ) `  A
)  x.  ( |_
`  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) )  e.  RR )
67 1red 9689 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
1  e.  RR )
68 zexpcl 12325 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  ( K  mod  ( ( odZ `  N
) `  A )
)  e.  NN0 )  ->  ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  e.  ZZ )
6941, 10, 68syl2anc 671 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  e.  ZZ )
7037nnrpd 11373 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  N  e.  RR+ )
7142, 62, 53expmuld 12457 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( A ^ (
( ( odZ `  N ) `  A
)  x.  ( |_
`  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) )  =  ( ( A ^ ( ( odZ `  N
) `  A )
) ^ ( |_
`  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) )
7271oveq1d 6335 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( A ^
( ( ( odZ `  N ) `  A )  x.  ( |_ `  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) )  mod  N )  =  ( ( ( A ^ ( ( odZ `  N
) `  A )
) ^ ( |_
`  ( K  / 
( ( odZ `  N ) `  A
) ) ) )  mod  N ) )
73 zexpcl 12325 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  ( ( odZ `  N ) `  A
)  e.  NN0 )  ->  ( A ^ (
( odZ `  N ) `  A
) )  e.  ZZ )
7441, 53, 73syl2anc 671 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( A ^ (
( odZ `  N ) `  A
) )  e.  ZZ )
75 1zzd 11002 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
1  e.  ZZ )
76 odzidOLD 14800 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  N  ||  ( ( A ^
( ( odZ `  N ) `  A
) )  -  1 ) )
7776adantr 471 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  N  ||  ( ( A ^ ( ( odZ `  N ) `  A ) )  - 
1 ) )
78 moddvds 14367 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( A ^ ( ( odZ `  N
) `  A )
)  e.  ZZ  /\  1  e.  ZZ )  ->  ( ( ( A ^ ( ( odZ `  N ) `  A ) )  mod 
N )  =  ( 1  mod  N )  <-> 
N  ||  ( ( A ^ ( ( odZ `  N ) `  A ) )  - 
1 ) ) )
7937, 74, 75, 78syl3anc 1276 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( A ^ ( ( odZ `  N ) `  A ) )  mod 
N )  =  ( 1  mod  N )  <-> 
N  ||  ( ( A ^ ( ( odZ `  N ) `  A ) )  - 
1 ) ) )
8077, 79mpbird 240 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( A ^
( ( odZ `  N ) `  A
) )  mod  N
)  =  ( 1  mod  N ) )
81 modexp 12445 . . . . . . . 8  |-  ( ( ( ( A ^
( ( odZ `  N ) `  A
) )  e.  ZZ  /\  1  e.  ZZ )  /\  ( ( |_
`  ( K  / 
( ( odZ `  N ) `  A
) ) )  e. 
NN0  /\  N  e.  RR+ )  /\  ( ( A ^ ( ( odZ `  N
) `  A )
)  mod  N )  =  ( 1  mod 
N ) )  -> 
( ( ( A ^ ( ( odZ `  N ) `  A ) ) ^
( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) ) )  mod  N )  =  ( ( 1 ^ ( |_ `  ( K  /  (
( odZ `  N ) `  A
) ) ) )  mod  N ) )
8274, 75, 62, 70, 80, 81syl221anc 1287 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( A ^ ( ( odZ `  N ) `  A ) ) ^
( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) ) )  mod  N )  =  ( ( 1 ^ ( |_ `  ( K  /  (
( odZ `  N ) `  A
) ) ) )  mod  N ) )
8354flcld 12072 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) )  e.  ZZ )
84 1exp 12339 . . . . . . . . 9  |-  ( ( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) )  e.  ZZ  ->  (
1 ^ ( |_
`  ( K  / 
( ( odZ `  N ) `  A
) ) ) )  =  1 )
8583, 84syl 17 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( 1 ^ ( |_ `  ( K  / 
( ( odZ `  N ) `  A
) ) ) )  =  1 )
8685oveq1d 6335 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( 1 ^ ( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) ) )  mod  N )  =  ( 1  mod 
N ) )
8772, 82, 863eqtrd 2500 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( A ^
( ( ( odZ `  N ) `  A )  x.  ( |_ `  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) )  mod  N )  =  ( 1  mod 
N ) )
88 modmul1 12181 . . . . . 6  |-  ( ( ( ( A ^
( ( ( odZ `  N ) `  A )  x.  ( |_ `  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) )  e.  RR  /\  1  e.  RR )  /\  ( ( A ^
( K  mod  (
( odZ `  N ) `  A
) ) )  e.  ZZ  /\  N  e.  RR+ )  /\  (
( A ^ (
( ( odZ `  N ) `  A
)  x.  ( |_
`  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) )  mod  N )  =  ( 1  mod 
N ) )  -> 
( ( ( A ^ ( ( ( odZ `  N
) `  A )  x.  ( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) ) ) )  x.  ( A ^ ( K  mod  ( ( odZ `  N ) `  A
) ) ) )  mod  N )  =  ( ( 1  x.  ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) ) )  mod  N ) )
8966, 67, 69, 70, 87, 88syl221anc 1287 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( A ^ ( ( ( odZ `  N
) `  A )  x.  ( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) ) ) )  x.  ( A ^ ( K  mod  ( ( odZ `  N ) `  A
) ) ) )  mod  N )  =  ( ( 1  x.  ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) ) )  mod  N ) )
9042, 10, 63expaddd 12456 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( A ^ (
( ( ( odZ `  N ) `  A )  x.  ( |_ `  ( K  / 
( ( odZ `  N ) `  A
) ) ) )  +  ( K  mod  ( ( odZ `  N ) `  A
) ) ) )  =  ( ( A ^ ( ( ( odZ `  N
) `  A )  x.  ( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) ) ) )  x.  ( A ^ ( K  mod  ( ( odZ `  N ) `  A
) ) ) ) )
91 modval 12136 . . . . . . . . . . 11  |-  ( ( K  e.  RR  /\  ( ( odZ `  N ) `  A
)  e.  RR+ )  ->  ( K  mod  (
( odZ `  N ) `  A
) )  =  ( K  -  ( ( ( odZ `  N ) `  A
)  x.  ( |_
`  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) ) )
922, 5, 91syl2anc 671 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( K  mod  (
( odZ `  N ) `  A
) )  =  ( K  -  ( ( ( odZ `  N ) `  A
)  x.  ( |_
`  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) ) )
9392oveq2d 6336 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( ( odZ `  N
) `  A )  x.  ( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) ) )  +  ( K  mod  ( ( odZ `  N ) `  A ) ) )  =  ( ( ( ( odZ `  N ) `  A
)  x.  ( |_
`  ( K  / 
( ( odZ `  N ) `  A
) ) ) )  +  ( K  -  ( ( ( odZ `  N ) `  A )  x.  ( |_ `  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) ) ) )
9463nn0cnd 10961 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( odZ `  N ) `  A )  x.  ( |_ `  ( K  / 
( ( odZ `  N ) `  A
) ) ) )  e.  CC )
952recnd 9700 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  K  e.  CC )
9694, 95pncan3d 10020 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( ( odZ `  N
) `  A )  x.  ( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) ) )  +  ( K  -  ( ( ( odZ `  N
) `  A )  x.  ( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) ) ) ) )  =  K )
9793, 96eqtrd 2496 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( ( odZ `  N
) `  A )  x.  ( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) ) )  +  ( K  mod  ( ( odZ `  N ) `  A ) ) )  =  K )
9897oveq2d 6336 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( A ^ (
( ( ( odZ `  N ) `  A )  x.  ( |_ `  ( K  / 
( ( odZ `  N ) `  A
) ) ) )  +  ( K  mod  ( ( odZ `  N ) `  A
) ) ) )  =  ( A ^ K ) )
9990, 98eqtr3d 2498 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( A ^
( ( ( odZ `  N ) `  A )  x.  ( |_ `  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) )  x.  ( A ^ ( K  mod  ( ( odZ `  N ) `  A
) ) ) )  =  ( A ^ K ) )
10099oveq1d 6335 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( A ^ ( ( ( odZ `  N
) `  A )  x.  ( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) ) ) )  x.  ( A ^ ( K  mod  ( ( odZ `  N ) `  A
) ) ) )  mod  N )  =  ( ( A ^ K )  mod  N
) )
10169zcnd 11075 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  e.  CC )
102101mulid2d 9692 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( 1  x.  ( A ^ ( K  mod  ( ( odZ `  N ) `  A
) ) ) )  =  ( A ^
( K  mod  (
( odZ `  N ) `  A
) ) ) )
103102oveq1d 6335 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( 1  x.  ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) ) )  mod  N )  =  ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A
) ) )  mod 
N ) )
10489, 100, 1033eqtr3d 2504 . . . 4  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( A ^ K )  mod  N
)  =  ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  mod  N ) )
105104eqeq1d 2464 . . 3  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( A ^ K )  mod 
N )  =  ( 1  mod  N )  <-> 
( ( A ^
( K  mod  (
( odZ `  N ) `  A
) ) )  mod 
N )  =  ( 1  mod  N ) ) )
106 zexpcl 12325 . . . . 5  |-  ( ( A  e.  ZZ  /\  K  e.  NN0 )  -> 
( A ^ K
)  e.  ZZ )
10741, 106sylancom 678 . . . 4  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( A ^ K
)  e.  ZZ )
108 moddvds 14367 . . . 4  |-  ( ( N  e.  NN  /\  ( A ^ K )  e.  ZZ  /\  1  e.  ZZ )  ->  (
( ( A ^ K )  mod  N
)  =  ( 1  mod  N )  <->  N  ||  (
( A ^ K
)  -  1 ) ) )
10937, 107, 75, 108syl3anc 1276 . . 3  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( A ^ K )  mod 
N )  =  ( 1  mod  N )  <-> 
N  ||  ( ( A ^ K )  - 
1 ) ) )
110 moddvds 14367 . . . 4  |-  ( ( N  e.  NN  /\  ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  e.  ZZ  /\  1  e.  ZZ )  ->  (
( ( A ^
( K  mod  (
( odZ `  N ) `  A
) ) )  mod 
N )  =  ( 1  mod  N )  <-> 
N  ||  ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A
) ) )  - 
1 ) ) )
11137, 69, 75, 110syl3anc 1276 . . 3  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A
) ) )  mod 
N )  =  ( 1  mod  N )  <-> 
N  ||  ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A
) ) )  - 
1 ) ) )
112105, 109, 1113bitr3d 291 . 2  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( N  ||  (
( A ^ K
)  -  1 )  <-> 
N  ||  ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A
) ) )  - 
1 ) ) )
113 dvdsval3 14364 . . 3  |-  ( ( ( ( odZ `  N ) `  A
)  e.  NN  /\  K  e.  ZZ )  ->  ( ( ( odZ `  N ) `  A )  ||  K  <->  ( K  mod  ( ( odZ `  N
) `  A )
)  =  0 ) )
1144, 9, 113syl2anc 671 . 2  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( odZ `  N ) `  A )  ||  K  <->  ( K  mod  ( ( odZ `  N
) `  A )
)  =  0 ) )
11552, 112, 1143bitr4d 293 1  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( N  ||  (
( A ^ K
)  -  1 )  <-> 
( ( odZ `  N ) `  A
)  ||  K )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    \/ wo 374    /\ wa 375    /\ w3a 991    = wceq 1455    e. wcel 1898   {crab 2753    C_ wss 3416   class class class wbr 4418   `'ccnv 4855   ` cfv 5605  (class class class)co 6320   supcsup 7985   RRcr 9569   0cc0 9570   1c1 9571    + caddc 9573    x. cmul 9575    < clt 9706    <_ cle 9707    - cmin 9891    / cdiv 10302   NNcn 10642   NN0cn0 10903   ZZcz 10971   ZZ>=cuz 11193   RR+crp 11336   |_cfl 12064    mod cmo 12134   ^cexp 12310    || cdvds 14360    gcd cgcd 14523   odZcodzold 14765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-rep 4531  ax-sep 4541  ax-nul 4550  ax-pow 4598  ax-pr 4656  ax-un 6615  ax-cnex 9626  ax-resscn 9627  ax-1cn 9628  ax-icn 9629  ax-addcl 9630  ax-addrcl 9631  ax-mulcl 9632  ax-mulrcl 9633  ax-mulcom 9634  ax-addass 9635  ax-mulass 9636  ax-distr 9637  ax-i2m1 9638  ax-1ne0 9639  ax-1rid 9640  ax-rnegex 9641  ax-rrecex 9642  ax-cnre 9643  ax-pre-lttri 9644  ax-pre-lttrn 9645  ax-pre-ltadd 9646  ax-pre-mulgt0 9647  ax-pre-sup 9648
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-3an 993  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-nel 2636  df-ral 2754  df-rex 2755  df-reu 2756  df-rmo 2757  df-rab 2758  df-v 3059  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3744  df-if 3894  df-pw 3965  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4213  df-int 4249  df-iun 4294  df-br 4419  df-opab 4478  df-mpt 4479  df-tr 4514  df-eprel 4767  df-id 4771  df-po 4777  df-so 4778  df-fr 4815  df-we 4817  df-xp 4862  df-rel 4863  df-cnv 4864  df-co 4865  df-dm 4866  df-rn 4867  df-res 4868  df-ima 4869  df-pred 5403  df-ord 5449  df-on 5450  df-lim 5451  df-suc 5452  df-iota 5569  df-fun 5607  df-fn 5608  df-f 5609  df-f1 5610  df-fo 5611  df-f1o 5612  df-fv 5613  df-riota 6282  df-ov 6323  df-oprab 6324  df-mpt2 6325  df-om 6725  df-1st 6825  df-2nd 6826  df-wrecs 7059  df-recs 7121  df-rdg 7159  df-1o 7213  df-oadd 7217  df-er 7394  df-map 7505  df-en 7601  df-dom 7602  df-sdom 7603  df-fin 7604  df-sup 7987  df-inf 7988  df-card 8404  df-pnf 9708  df-mnf 9709  df-xr 9710  df-ltxr 9711  df-le 9712  df-sub 9893  df-neg 9894  df-div 10303  df-nn 10643  df-2 10701  df-3 10702  df-n0 10904  df-z 10972  df-uz 11194  df-rp 11337  df-fz 11820  df-fzo 11953  df-fl 12066  df-mod 12135  df-seq 12252  df-exp 12311  df-hash 12554  df-cj 13217  df-re 13218  df-im 13219  df-sqrt 13353  df-abs 13354  df-dvds 14361  df-gcd 14524  df-odzOLD 14768  df-phi 14769
This theorem is referenced by:  odzphiOLD  14802
  Copyright terms: Public domain W3C validator