MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odzcllem Structured version   Unicode version

Theorem odzcllem 13864
Description: - Lemma for odzcl 13865, showing existence of a recurrent point for the exponential. (Contributed by Mario Carneiro, 28-Feb-2014.)
Assertion
Ref Expression
odzcllem  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  (
( ( odZ `  N ) `  A
)  e.  NN  /\  N  ||  ( ( A ^ ( ( odZ `  N ) `  A ) )  - 
1 ) ) )

Proof of Theorem odzcllem
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 odzval 13863 . . 3  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  (
( odZ `  N ) `  A
)  =  sup ( { n  e.  NN  |  N  ||  ( ( A ^ n )  -  1 ) } ,  RR ,  `'  <  ) )
2 ssrab2 3437 . . . . 5  |-  { n  e.  NN  |  N  ||  ( ( A ^
n )  -  1 ) }  C_  NN
3 nnuz 10896 . . . . 5  |-  NN  =  ( ZZ>= `  1 )
42, 3sseqtri 3388 . . . 4  |-  { n  e.  NN  |  N  ||  ( ( A ^
n )  -  1 ) }  C_  ( ZZ>=
`  1 )
5 phicl 13844 . . . . . . 7  |-  ( N  e.  NN  ->  ( phi `  N )  e.  NN )
653ad2ant1 1009 . . . . . 6  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  ( phi `  N )  e.  NN )
7 eulerth 13858 . . . . . . 7  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  (
( A ^ ( phi `  N ) )  mod  N )  =  ( 1  mod  N
) )
8 simp1 988 . . . . . . . 8  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  N  e.  NN )
9 simp2 989 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  A  e.  ZZ )
106nnnn0d 10636 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  ( phi `  N )  e. 
NN0 )
11 zexpcl 11880 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  ( phi `  N )  e.  NN0 )  -> 
( A ^ ( phi `  N ) )  e.  ZZ )
129, 10, 11syl2anc 661 . . . . . . . 8  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  ( A ^ ( phi `  N ) )  e.  ZZ )
13 1z 10676 . . . . . . . . 9  |-  1  e.  ZZ
14 moddvds 13542 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( A ^ ( phi `  N ) )  e.  ZZ  /\  1  e.  ZZ )  ->  (
( ( A ^
( phi `  N
) )  mod  N
)  =  ( 1  mod  N )  <->  N  ||  (
( A ^ ( phi `  N ) )  -  1 ) ) )
1513, 14mp3an3 1303 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( A ^ ( phi `  N ) )  e.  ZZ )  ->  (
( ( A ^
( phi `  N
) )  mod  N
)  =  ( 1  mod  N )  <->  N  ||  (
( A ^ ( phi `  N ) )  -  1 ) ) )
168, 12, 15syl2anc 661 . . . . . . 7  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  (
( ( A ^
( phi `  N
) )  mod  N
)  =  ( 1  mod  N )  <->  N  ||  (
( A ^ ( phi `  N ) )  -  1 ) ) )
177, 16mpbid 210 . . . . . 6  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  N  ||  ( ( A ^
( phi `  N
) )  -  1 ) )
18 oveq2 6099 . . . . . . . . 9  |-  ( n  =  ( phi `  N )  ->  ( A ^ n )  =  ( A ^ ( phi `  N ) ) )
1918oveq1d 6106 . . . . . . . 8  |-  ( n  =  ( phi `  N )  ->  (
( A ^ n
)  -  1 )  =  ( ( A ^ ( phi `  N ) )  - 
1 ) )
2019breq2d 4304 . . . . . . 7  |-  ( n  =  ( phi `  N )  ->  ( N  ||  ( ( A ^ n )  - 
1 )  <->  N  ||  (
( A ^ ( phi `  N ) )  -  1 ) ) )
2120rspcev 3073 . . . . . 6  |-  ( ( ( phi `  N
)  e.  NN  /\  N  ||  ( ( A ^ ( phi `  N ) )  - 
1 ) )  ->  E. n  e.  NN  N  ||  ( ( A ^ n )  - 
1 ) )
226, 17, 21syl2anc 661 . . . . 5  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  E. n  e.  NN  N  ||  (
( A ^ n
)  -  1 ) )
23 rabn0 3657 . . . . 5  |-  ( { n  e.  NN  |  N  ||  ( ( A ^ n )  - 
1 ) }  =/=  (/)  <->  E. n  e.  NN  N  ||  ( ( A ^
n )  -  1 ) )
2422, 23sylibr 212 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  { n  e.  NN  |  N  ||  ( ( A ^
n )  -  1 ) }  =/=  (/) )
25 infmssuzcl 10938 . . . 4  |-  ( ( { n  e.  NN  |  N  ||  ( ( A ^ n )  -  1 ) } 
C_  ( ZZ>= `  1
)  /\  { n  e.  NN  |  N  ||  ( ( A ^
n )  -  1 ) }  =/=  (/) )  ->  sup ( { n  e.  NN  |  N  ||  ( ( A ^
n )  -  1 ) } ,  RR ,  `'  <  )  e. 
{ n  e.  NN  |  N  ||  ( ( A ^ n )  -  1 ) } )
264, 24, 25sylancr 663 . . 3  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  sup ( { n  e.  NN  |  N  ||  ( ( A ^ n )  -  1 ) } ,  RR ,  `'  <  )  e.  { n  e.  NN  |  N  ||  ( ( A ^
n )  -  1 ) } )
271, 26eqeltrd 2517 . 2  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  (
( odZ `  N ) `  A
)  e.  { n  e.  NN  |  N  ||  ( ( A ^
n )  -  1 ) } )
28 oveq2 6099 . . . . 5  |-  ( n  =  ( ( odZ `  N ) `  A )  ->  ( A ^ n )  =  ( A ^ (
( odZ `  N ) `  A
) ) )
2928oveq1d 6106 . . . 4  |-  ( n  =  ( ( odZ `  N ) `  A )  ->  (
( A ^ n
)  -  1 )  =  ( ( A ^ ( ( odZ `  N ) `  A ) )  - 
1 ) )
3029breq2d 4304 . . 3  |-  ( n  =  ( ( odZ `  N ) `  A )  ->  ( N  ||  ( ( A ^ n )  - 
1 )  <->  N  ||  (
( A ^ (
( odZ `  N ) `  A
) )  -  1 ) ) )
3130elrab 3117 . 2  |-  ( ( ( odZ `  N ) `  A
)  e.  { n  e.  NN  |  N  ||  ( ( A ^
n )  -  1 ) }  <->  ( (
( odZ `  N ) `  A
)  e.  NN  /\  N  ||  ( ( A ^ ( ( odZ `  N ) `  A ) )  - 
1 ) ) )
3227, 31sylib 196 1  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  (
( ( odZ `  N ) `  A
)  e.  NN  /\  N  ||  ( ( A ^ ( ( odZ `  N ) `  A ) )  - 
1 ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2606   E.wrex 2716   {crab 2719    C_ wss 3328   (/)c0 3637   class class class wbr 4292   `'ccnv 4839   ` cfv 5418  (class class class)co 6091   supcsup 7690   RRcr 9281   1c1 9283    < clt 9418    - cmin 9595   NNcn 10322   NN0cn0 10579   ZZcz 10646   ZZ>=cuz 10861    mod cmo 11708   ^cexp 11865    || cdivides 13535    gcd cgcd 13690   odZcodz 13838   phicphi 13839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359  ax-pre-sup 9360
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-1st 6577  df-2nd 6578  df-recs 6832  df-rdg 6866  df-1o 6920  df-oadd 6924  df-er 7101  df-map 7216  df-en 7311  df-dom 7312  df-sdom 7313  df-fin 7314  df-sup 7691  df-card 8109  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-div 9994  df-nn 10323  df-2 10380  df-3 10381  df-n0 10580  df-z 10647  df-uz 10862  df-rp 10992  df-fz 11438  df-fzo 11549  df-fl 11642  df-mod 11709  df-seq 11807  df-exp 11866  df-hash 12104  df-cj 12588  df-re 12589  df-im 12590  df-sqr 12724  df-abs 12725  df-dvds 13536  df-gcd 13691  df-odz 13840  df-phi 13841
This theorem is referenced by:  odzcl  13865  odzid  13866
  Copyright terms: Public domain W3C validator