MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odrngstr Structured version   Unicode version

Theorem odrngstr 14823
Description: Functionality of an ordered metric ring. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypothesis
Ref Expression
odrngstr.w  |-  W  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.x.  >. }  u.  { <. (TopSet `  ndx ) ,  J >. ,  <. ( le `  ndx ) , 
.<_  >. ,  <. ( dist `  ndx ) ,  D >. } )
Assertion
Ref Expression
odrngstr  |-  W Struct  <. 1 , ; 1 2 >.

Proof of Theorem odrngstr
StepHypRef Expression
1 odrngstr.w . 2  |-  W  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.x.  >. }  u.  { <. (TopSet `  ndx ) ,  J >. ,  <. ( le `  ndx ) , 
.<_  >. ,  <. ( dist `  ndx ) ,  D >. } )
2 eqid 2457 . . . 4  |-  { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.x.  >. }  =  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .x.  >. }
32rngstr 14763 . . 3  |-  { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.x.  >. } Struct  <. 1 ,  3 >.
4 9nn 10721 . . . 4  |-  9  e.  NN
5 tsetndx 14803 . . . 4  |-  (TopSet `  ndx )  =  9
6 9lt10 10759 . . . 4  |-  9  <  10
7 10nn 10722 . . . 4  |-  10  e.  NN
8 plendx 14810 . . . 4  |-  ( le
`  ndx )  =  10
9 dec10 11030 . . . . 5  |-  10  = ; 1 0
10 1nn0 10832 . . . . . 6  |-  1  e.  NN0
11 0nn0 10831 . . . . . 6  |-  0  e.  NN0
12 2nn 10714 . . . . . 6  |-  2  e.  NN
13 2pos 10648 . . . . . 6  |-  0  <  2
1410, 11, 12, 13declt 11021 . . . . 5  |- ; 1 0  < ; 1 2
159, 14eqbrtri 4475 . . . 4  |-  10  < ; 1 2
1610, 12decnncl 11013 . . . 4  |- ; 1 2  e.  NN
17 dsndx 14819 . . . 4  |-  ( dist `  ndx )  = ; 1 2
184, 5, 6, 7, 8, 15, 16, 17strle3 14745 . . 3  |-  { <. (TopSet `  ndx ) ,  J >. ,  <. ( le `  ndx ) ,  .<_  >. ,  <. (
dist `  ndx ) ,  D >. } Struct  <. 9 , ; 1
2 >.
19 3lt9 10756 . . 3  |-  3  <  9
203, 18, 19strleun 14742 . 2  |-  ( {
<. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .x.  >. }  u.  { <. (TopSet `  ndx ) ,  J >. ,  <. ( le `  ndx ) , 
.<_  >. ,  <. ( dist `  ndx ) ,  D >. } ) Struct  <. 1 , ; 1 2 >.
211, 20eqbrtri 4475 1  |-  W Struct  <. 1 , ; 1 2 >.
Colors of variables: wff setvar class
Syntax hints:    = wceq 1395    u. cun 3469   {ctp 4036   <.cop 4038   class class class wbr 4456   ` cfv 5594   0cc0 9509   1c1 9510    < clt 9645   2c2 10606   3c3 10607   9c9 10613   10c10 10614  ;cdc 11000   Struct cstr 14640   ndxcnx 14641   Basecbs 14644   +g cplusg 14712   .rcmulr 14713  TopSetcts 14718   lecple 14719   distcds 14721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-oadd 7152  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-2 10615  df-3 10616  df-4 10617  df-5 10618  df-6 10619  df-7 10620  df-8 10621  df-9 10622  df-10 10623  df-n0 10817  df-z 10886  df-dec 11001  df-uz 11107  df-fz 11698  df-struct 14646  df-ndx 14647  df-slot 14648  df-base 14649  df-plusg 14725  df-mulr 14726  df-tset 14731  df-ple 14732  df-ds 14734
This theorem is referenced by:  odrngbas  14824  odrngplusg  14825  odrngmulr  14826  odrngtset  14827  odrngle  14828  odrngds  14829  xrsstr  18559
  Copyright terms: Public domain W3C validator