MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odmodnn0 Structured version   Unicode version

Theorem odmodnn0 16156
Description: Reduce the argument of a group multiple by modding out the order of the element. (Contributed by Mario Carneiro, 23-Sep-2015.)
Hypotheses
Ref Expression
odcl.1  |-  X  =  ( Base `  G
)
odcl.2  |-  O  =  ( od `  G
)
odid.3  |-  .x.  =  (.g
`  G )
odid.4  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
odmodnn0  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( N  mod  ( O `  A ) )  .x.  A )  =  ( N  .x.  A ) )

Proof of Theorem odmodnn0
StepHypRef Expression
1 simpl1 991 . . . 4  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  ->  G  e.  Mnd )
2 nnnn0 10690 . . . . . 6  |-  ( ( O `  A )  e.  NN  ->  ( O `  A )  e.  NN0 )
32adantl 466 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( O `  A
)  e.  NN0 )
4 simpl3 993 . . . . . . . 8  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  ->  N  e.  NN0 )
54nn0red 10741 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  ->  N  e.  RR )
6 nnrp 11104 . . . . . . . 8  |-  ( ( O `  A )  e.  NN  ->  ( O `  A )  e.  RR+ )
76adantl 466 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( O `  A
)  e.  RR+ )
85, 7rerpdivcld 11158 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( N  /  ( O `  A )
)  e.  RR )
94nn0ge0d 10743 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
0  <_  N )
10 nnre 10433 . . . . . . . 8  |-  ( ( O `  A )  e.  NN  ->  ( O `  A )  e.  RR )
1110adantl 466 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( O `  A
)  e.  RR )
12 nngt0 10455 . . . . . . . 8  |-  ( ( O `  A )  e.  NN  ->  0  <  ( O `  A
) )
1312adantl 466 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
0  <  ( O `  A ) )
14 divge0 10302 . . . . . . 7  |-  ( ( ( N  e.  RR  /\  0  <_  N )  /\  ( ( O `  A )  e.  RR  /\  0  <  ( O `
 A ) ) )  ->  0  <_  ( N  /  ( O `
 A ) ) )
155, 9, 11, 13, 14syl22anc 1220 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
0  <_  ( N  /  ( O `  A ) ) )
16 flge0nn0 11776 . . . . . 6  |-  ( ( ( N  /  ( O `  A )
)  e.  RR  /\  0  <_  ( N  / 
( O `  A
) ) )  -> 
( |_ `  ( N  /  ( O `  A ) ) )  e.  NN0 )
178, 15, 16syl2anc 661 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( |_ `  ( N  /  ( O `  A ) ) )  e.  NN0 )
183, 17nn0mulcld 10745 . . . 4  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( O `  A )  x.  ( |_ `  ( N  / 
( O `  A
) ) ) )  e.  NN0 )
194nn0zd 10849 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  ->  N  e.  ZZ )
20 zmodcl 11837 . . . . 5  |-  ( ( N  e.  ZZ  /\  ( O `  A )  e.  NN )  -> 
( N  mod  ( O `  A )
)  e.  NN0 )
2119, 20sylancom 667 . . . 4  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( N  mod  ( O `  A )
)  e.  NN0 )
22 simpl2 992 . . . 4  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  ->  A  e.  X )
23 odcl.1 . . . . 5  |-  X  =  ( Base `  G
)
24 odid.3 . . . . 5  |-  .x.  =  (.g
`  G )
25 eqid 2451 . . . . 5  |-  ( +g  `  G )  =  ( +g  `  G )
2623, 24, 25mulgnn0dir 15761 . . . 4  |-  ( ( G  e.  Mnd  /\  ( ( ( O `
 A )  x.  ( |_ `  ( N  /  ( O `  A ) ) ) )  e.  NN0  /\  ( N  mod  ( O `
 A ) )  e.  NN0  /\  A  e.  X ) )  -> 
( ( ( ( O `  A )  x.  ( |_ `  ( N  /  ( O `  A )
) ) )  +  ( N  mod  ( O `  A )
) )  .x.  A
)  =  ( ( ( ( O `  A )  x.  ( |_ `  ( N  / 
( O `  A
) ) ) ) 
.x.  A ) ( +g  `  G ) ( ( N  mod  ( O `  A ) )  .x.  A ) ) )
271, 18, 21, 22, 26syl13anc 1221 . . 3  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( ( ( O `  A )  x.  ( |_ `  ( N  /  ( O `  A )
) ) )  +  ( N  mod  ( O `  A )
) )  .x.  A
)  =  ( ( ( ( O `  A )  x.  ( |_ `  ( N  / 
( O `  A
) ) ) ) 
.x.  A ) ( +g  `  G ) ( ( N  mod  ( O `  A ) )  .x.  A ) ) )
2811recnd 9516 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( O `  A
)  e.  CC )
2917nn0cnd 10742 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( |_ `  ( N  /  ( O `  A ) ) )  e.  CC )
3028, 29mulcomd 9511 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( O `  A )  x.  ( |_ `  ( N  / 
( O `  A
) ) ) )  =  ( ( |_
`  ( N  / 
( O `  A
) ) )  x.  ( O `  A
) ) )
3130oveq1d 6208 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( ( O `
 A )  x.  ( |_ `  ( N  /  ( O `  A ) ) ) )  .x.  A )  =  ( ( ( |_ `  ( N  /  ( O `  A ) ) )  x.  ( O `  A ) )  .x.  A ) )
3223, 24mulgnn0ass 15767 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  ( ( |_ `  ( N  /  ( O `  A )
) )  e.  NN0  /\  ( O `  A
)  e.  NN0  /\  A  e.  X )
)  ->  ( (
( |_ `  ( N  /  ( O `  A ) ) )  x.  ( O `  A ) )  .x.  A )  =  ( ( |_ `  ( N  /  ( O `  A ) ) ) 
.x.  ( ( O `
 A )  .x.  A ) ) )
331, 17, 3, 22, 32syl13anc 1221 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( ( |_
`  ( N  / 
( O `  A
) ) )  x.  ( O `  A
) )  .x.  A
)  =  ( ( |_ `  ( N  /  ( O `  A ) ) ) 
.x.  ( ( O `
 A )  .x.  A ) ) )
34 odcl.2 . . . . . . . . . 10  |-  O  =  ( od `  G
)
35 odid.4 . . . . . . . . . 10  |-  .0.  =  ( 0g `  G )
3623, 34, 24, 35odid 16154 . . . . . . . . 9  |-  ( A  e.  X  ->  (
( O `  A
)  .x.  A )  =  .0.  )
3722, 36syl 16 . . . . . . . 8  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( O `  A )  .x.  A
)  =  .0.  )
3837oveq2d 6209 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( |_ `  ( N  /  ( O `  A )
) )  .x.  (
( O `  A
)  .x.  A )
)  =  ( ( |_ `  ( N  /  ( O `  A ) ) ) 
.x.  .0.  ) )
3923, 24, 35mulgnn0z 15758 . . . . . . . 8  |-  ( ( G  e.  Mnd  /\  ( |_ `  ( N  /  ( O `  A ) ) )  e.  NN0 )  -> 
( ( |_ `  ( N  /  ( O `  A )
) )  .x.  .0.  )  =  .0.  )
401, 17, 39syl2anc 661 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( |_ `  ( N  /  ( O `  A )
) )  .x.  .0.  )  =  .0.  )
4138, 40eqtrd 2492 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( |_ `  ( N  /  ( O `  A )
) )  .x.  (
( O `  A
)  .x.  A )
)  =  .0.  )
4233, 41eqtrd 2492 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( ( |_
`  ( N  / 
( O `  A
) ) )  x.  ( O `  A
) )  .x.  A
)  =  .0.  )
4331, 42eqtrd 2492 . . . 4  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( ( O `
 A )  x.  ( |_ `  ( N  /  ( O `  A ) ) ) )  .x.  A )  =  .0.  )
4443oveq1d 6208 . . 3  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( ( ( O `  A )  x.  ( |_ `  ( N  /  ( O `  A )
) ) )  .x.  A ) ( +g  `  G ) ( ( N  mod  ( O `
 A ) ) 
.x.  A ) )  =  (  .0.  ( +g  `  G ) ( ( N  mod  ( O `  A )
)  .x.  A )
) )
4527, 44eqtrd 2492 . 2  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( ( ( O `  A )  x.  ( |_ `  ( N  /  ( O `  A )
) ) )  +  ( N  mod  ( O `  A )
) )  .x.  A
)  =  (  .0.  ( +g  `  G
) ( ( N  mod  ( O `  A ) )  .x.  A ) ) )
46 modval 11820 . . . . . 6  |-  ( ( N  e.  RR  /\  ( O `  A )  e.  RR+ )  ->  ( N  mod  ( O `  A ) )  =  ( N  -  (
( O `  A
)  x.  ( |_
`  ( N  / 
( O `  A
) ) ) ) ) )
475, 7, 46syl2anc 661 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( N  mod  ( O `  A )
)  =  ( N  -  ( ( O `
 A )  x.  ( |_ `  ( N  /  ( O `  A ) ) ) ) ) )
4847oveq2d 6209 . . . 4  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( ( O `
 A )  x.  ( |_ `  ( N  /  ( O `  A ) ) ) )  +  ( N  mod  ( O `  A ) ) )  =  ( ( ( O `  A )  x.  ( |_ `  ( N  /  ( O `  A )
) ) )  +  ( N  -  (
( O `  A
)  x.  ( |_
`  ( N  / 
( O `  A
) ) ) ) ) ) )
4918nn0cnd 10742 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( O `  A )  x.  ( |_ `  ( N  / 
( O `  A
) ) ) )  e.  CC )
504nn0cnd 10742 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  ->  N  e.  CC )
5149, 50pncan3d 9826 . . . 4  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( ( O `
 A )  x.  ( |_ `  ( N  /  ( O `  A ) ) ) )  +  ( N  -  ( ( O `
 A )  x.  ( |_ `  ( N  /  ( O `  A ) ) ) ) ) )  =  N )
5248, 51eqtrd 2492 . . 3  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( ( O `
 A )  x.  ( |_ `  ( N  /  ( O `  A ) ) ) )  +  ( N  mod  ( O `  A ) ) )  =  N )
5352oveq1d 6208 . 2  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( ( ( O `  A )  x.  ( |_ `  ( N  /  ( O `  A )
) ) )  +  ( N  mod  ( O `  A )
) )  .x.  A
)  =  ( N 
.x.  A ) )
5423, 24mulgnn0cl 15754 . . . 4  |-  ( ( G  e.  Mnd  /\  ( N  mod  ( O `
 A ) )  e.  NN0  /\  A  e.  X )  ->  (
( N  mod  ( O `  A )
)  .x.  A )  e.  X )
551, 21, 22, 54syl3anc 1219 . . 3  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( N  mod  ( O `  A ) )  .x.  A )  e.  X )
5623, 25, 35mndlid 15552 . . 3  |-  ( ( G  e.  Mnd  /\  ( ( N  mod  ( O `  A ) )  .x.  A )  e.  X )  -> 
(  .0.  ( +g  `  G ) ( ( N  mod  ( O `
 A ) ) 
.x.  A ) )  =  ( ( N  mod  ( O `  A ) )  .x.  A ) )
571, 55, 56syl2anc 661 . 2  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
(  .0.  ( +g  `  G ) ( ( N  mod  ( O `
 A ) ) 
.x.  A ) )  =  ( ( N  mod  ( O `  A ) )  .x.  A ) )
5845, 53, 573eqtr3rd 2501 1  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( N  mod  ( O `  A ) )  .x.  A )  =  ( N  .x.  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   class class class wbr 4393   ` cfv 5519  (class class class)co 6193   RRcr 9385   0cc0 9386    + caddc 9389    x. cmul 9391    < clt 9522    <_ cle 9523    - cmin 9699    / cdiv 10097   NNcn 10426   NN0cn0 10683   ZZcz 10750   RR+crp 11095   |_cfl 11750    mod cmo 11818   Basecbs 14285   +g cplusg 14349   0gc0g 14489   Mndcmnd 15520  .gcmg 15525   odcod 16141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4504  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632  ax-un 6475  ax-inf2 7951  ax-cnex 9442  ax-resscn 9443  ax-1cn 9444  ax-icn 9445  ax-addcl 9446  ax-addrcl 9447  ax-mulcl 9448  ax-mulrcl 9449  ax-mulcom 9450  ax-addass 9451  ax-mulass 9452  ax-distr 9453  ax-i2m1 9454  ax-1ne0 9455  ax-1rid 9456  ax-rnegex 9457  ax-rrecex 9458  ax-cnre 9459  ax-pre-lttri 9460  ax-pre-lttrn 9461  ax-pre-ltadd 9462  ax-pre-mulgt0 9463  ax-pre-sup 9464
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3073  df-sbc 3288  df-csb 3390  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-pss 3445  df-nul 3739  df-if 3893  df-pw 3963  df-sn 3979  df-pr 3981  df-tp 3983  df-op 3985  df-uni 4193  df-iun 4274  df-br 4394  df-opab 4452  df-mpt 4453  df-tr 4487  df-eprel 4733  df-id 4737  df-po 4742  df-so 4743  df-fr 4780  df-we 4782  df-ord 4823  df-on 4824  df-lim 4825  df-suc 4826  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-rn 4952  df-res 4953  df-ima 4954  df-iota 5482  df-fun 5521  df-fn 5522  df-f 5523  df-f1 5524  df-fo 5525  df-f1o 5526  df-fv 5527  df-riota 6154  df-ov 6196  df-oprab 6197  df-mpt2 6198  df-om 6580  df-1st 6680  df-2nd 6681  df-recs 6935  df-rdg 6969  df-er 7204  df-en 7414  df-dom 7415  df-sdom 7416  df-sup 7795  df-pnf 9524  df-mnf 9525  df-xr 9526  df-ltxr 9527  df-le 9528  df-sub 9701  df-neg 9702  df-div 10098  df-nn 10427  df-n0 10684  df-z 10751  df-uz 10966  df-rp 11096  df-fz 11548  df-fl 11752  df-mod 11819  df-seq 11917  df-0g 14491  df-mnd 15526  df-mulg 15659  df-od 16145
This theorem is referenced by:  mndodcong  16158
  Copyright terms: Public domain W3C validator