MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odmodnn0 Structured version   Unicode version

Theorem odmodnn0 16763
Description: Reduce the argument of a group multiple by modding out the order of the element. (Contributed by Mario Carneiro, 23-Sep-2015.)
Hypotheses
Ref Expression
odcl.1  |-  X  =  ( Base `  G
)
odcl.2  |-  O  =  ( od `  G
)
odid.3  |-  .x.  =  (.g
`  G )
odid.4  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
odmodnn0  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( N  mod  ( O `  A ) )  .x.  A )  =  ( N  .x.  A ) )

Proof of Theorem odmodnn0
StepHypRef Expression
1 simpl1 997 . . . 4  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  ->  G  e.  Mnd )
2 nnnn0 10798 . . . . . 6  |-  ( ( O `  A )  e.  NN  ->  ( O `  A )  e.  NN0 )
32adantl 464 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( O `  A
)  e.  NN0 )
4 simpl3 999 . . . . . . . 8  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  ->  N  e.  NN0 )
54nn0red 10849 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  ->  N  e.  RR )
6 nnrp 11230 . . . . . . . 8  |-  ( ( O `  A )  e.  NN  ->  ( O `  A )  e.  RR+ )
76adantl 464 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( O `  A
)  e.  RR+ )
85, 7rerpdivcld 11286 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( N  /  ( O `  A )
)  e.  RR )
94nn0ge0d 10851 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
0  <_  N )
10 nnre 10538 . . . . . . . 8  |-  ( ( O `  A )  e.  NN  ->  ( O `  A )  e.  RR )
1110adantl 464 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( O `  A
)  e.  RR )
12 nngt0 10560 . . . . . . . 8  |-  ( ( O `  A )  e.  NN  ->  0  <  ( O `  A
) )
1312adantl 464 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
0  <  ( O `  A ) )
14 divge0 10407 . . . . . . 7  |-  ( ( ( N  e.  RR  /\  0  <_  N )  /\  ( ( O `  A )  e.  RR  /\  0  <  ( O `
 A ) ) )  ->  0  <_  ( N  /  ( O `
 A ) ) )
155, 9, 11, 13, 14syl22anc 1227 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
0  <_  ( N  /  ( O `  A ) ) )
16 flge0nn0 11936 . . . . . 6  |-  ( ( ( N  /  ( O `  A )
)  e.  RR  /\  0  <_  ( N  / 
( O `  A
) ) )  -> 
( |_ `  ( N  /  ( O `  A ) ) )  e.  NN0 )
178, 15, 16syl2anc 659 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( |_ `  ( N  /  ( O `  A ) ) )  e.  NN0 )
183, 17nn0mulcld 10853 . . . 4  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( O `  A )  x.  ( |_ `  ( N  / 
( O `  A
) ) ) )  e.  NN0 )
194nn0zd 10963 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  ->  N  e.  ZZ )
20 zmodcl 11997 . . . . 5  |-  ( ( N  e.  ZZ  /\  ( O `  A )  e.  NN )  -> 
( N  mod  ( O `  A )
)  e.  NN0 )
2119, 20sylancom 665 . . . 4  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( N  mod  ( O `  A )
)  e.  NN0 )
22 simpl2 998 . . . 4  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  ->  A  e.  X )
23 odcl.1 . . . . 5  |-  X  =  ( Base `  G
)
24 odid.3 . . . . 5  |-  .x.  =  (.g
`  G )
25 eqid 2454 . . . . 5  |-  ( +g  `  G )  =  ( +g  `  G )
2623, 24, 25mulgnn0dir 16364 . . . 4  |-  ( ( G  e.  Mnd  /\  ( ( ( O `
 A )  x.  ( |_ `  ( N  /  ( O `  A ) ) ) )  e.  NN0  /\  ( N  mod  ( O `
 A ) )  e.  NN0  /\  A  e.  X ) )  -> 
( ( ( ( O `  A )  x.  ( |_ `  ( N  /  ( O `  A )
) ) )  +  ( N  mod  ( O `  A )
) )  .x.  A
)  =  ( ( ( ( O `  A )  x.  ( |_ `  ( N  / 
( O `  A
) ) ) ) 
.x.  A ) ( +g  `  G ) ( ( N  mod  ( O `  A ) )  .x.  A ) ) )
271, 18, 21, 22, 26syl13anc 1228 . . 3  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( ( ( O `  A )  x.  ( |_ `  ( N  /  ( O `  A )
) ) )  +  ( N  mod  ( O `  A )
) )  .x.  A
)  =  ( ( ( ( O `  A )  x.  ( |_ `  ( N  / 
( O `  A
) ) ) ) 
.x.  A ) ( +g  `  G ) ( ( N  mod  ( O `  A ) )  .x.  A ) ) )
2811recnd 9611 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( O `  A
)  e.  CC )
2917nn0cnd 10850 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( |_ `  ( N  /  ( O `  A ) ) )  e.  CC )
3028, 29mulcomd 9606 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( O `  A )  x.  ( |_ `  ( N  / 
( O `  A
) ) ) )  =  ( ( |_
`  ( N  / 
( O `  A
) ) )  x.  ( O `  A
) ) )
3130oveq1d 6285 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( ( O `
 A )  x.  ( |_ `  ( N  /  ( O `  A ) ) ) )  .x.  A )  =  ( ( ( |_ `  ( N  /  ( O `  A ) ) )  x.  ( O `  A ) )  .x.  A ) )
3223, 24mulgnn0ass 16370 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  ( ( |_ `  ( N  /  ( O `  A )
) )  e.  NN0  /\  ( O `  A
)  e.  NN0  /\  A  e.  X )
)  ->  ( (
( |_ `  ( N  /  ( O `  A ) ) )  x.  ( O `  A ) )  .x.  A )  =  ( ( |_ `  ( N  /  ( O `  A ) ) ) 
.x.  ( ( O `
 A )  .x.  A ) ) )
331, 17, 3, 22, 32syl13anc 1228 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( ( |_
`  ( N  / 
( O `  A
) ) )  x.  ( O `  A
) )  .x.  A
)  =  ( ( |_ `  ( N  /  ( O `  A ) ) ) 
.x.  ( ( O `
 A )  .x.  A ) ) )
34 odcl.2 . . . . . . . . . 10  |-  O  =  ( od `  G
)
35 odid.4 . . . . . . . . . 10  |-  .0.  =  ( 0g `  G )
3623, 34, 24, 35odid 16761 . . . . . . . . 9  |-  ( A  e.  X  ->  (
( O `  A
)  .x.  A )  =  .0.  )
3722, 36syl 16 . . . . . . . 8  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( O `  A )  .x.  A
)  =  .0.  )
3837oveq2d 6286 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( |_ `  ( N  /  ( O `  A )
) )  .x.  (
( O `  A
)  .x.  A )
)  =  ( ( |_ `  ( N  /  ( O `  A ) ) ) 
.x.  .0.  ) )
3923, 24, 35mulgnn0z 16361 . . . . . . . 8  |-  ( ( G  e.  Mnd  /\  ( |_ `  ( N  /  ( O `  A ) ) )  e.  NN0 )  -> 
( ( |_ `  ( N  /  ( O `  A )
) )  .x.  .0.  )  =  .0.  )
401, 17, 39syl2anc 659 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( |_ `  ( N  /  ( O `  A )
) )  .x.  .0.  )  =  .0.  )
4138, 40eqtrd 2495 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( |_ `  ( N  /  ( O `  A )
) )  .x.  (
( O `  A
)  .x.  A )
)  =  .0.  )
4233, 41eqtrd 2495 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( ( |_
`  ( N  / 
( O `  A
) ) )  x.  ( O `  A
) )  .x.  A
)  =  .0.  )
4331, 42eqtrd 2495 . . . 4  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( ( O `
 A )  x.  ( |_ `  ( N  /  ( O `  A ) ) ) )  .x.  A )  =  .0.  )
4443oveq1d 6285 . . 3  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( ( ( O `  A )  x.  ( |_ `  ( N  /  ( O `  A )
) ) )  .x.  A ) ( +g  `  G ) ( ( N  mod  ( O `
 A ) ) 
.x.  A ) )  =  (  .0.  ( +g  `  G ) ( ( N  mod  ( O `  A )
)  .x.  A )
) )
4527, 44eqtrd 2495 . 2  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( ( ( O `  A )  x.  ( |_ `  ( N  /  ( O `  A )
) ) )  +  ( N  mod  ( O `  A )
) )  .x.  A
)  =  (  .0.  ( +g  `  G
) ( ( N  mod  ( O `  A ) )  .x.  A ) ) )
46 modval 11980 . . . . . 6  |-  ( ( N  e.  RR  /\  ( O `  A )  e.  RR+ )  ->  ( N  mod  ( O `  A ) )  =  ( N  -  (
( O `  A
)  x.  ( |_
`  ( N  / 
( O `  A
) ) ) ) ) )
475, 7, 46syl2anc 659 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( N  mod  ( O `  A )
)  =  ( N  -  ( ( O `
 A )  x.  ( |_ `  ( N  /  ( O `  A ) ) ) ) ) )
4847oveq2d 6286 . . . 4  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( ( O `
 A )  x.  ( |_ `  ( N  /  ( O `  A ) ) ) )  +  ( N  mod  ( O `  A ) ) )  =  ( ( ( O `  A )  x.  ( |_ `  ( N  /  ( O `  A )
) ) )  +  ( N  -  (
( O `  A
)  x.  ( |_
`  ( N  / 
( O `  A
) ) ) ) ) ) )
4918nn0cnd 10850 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( O `  A )  x.  ( |_ `  ( N  / 
( O `  A
) ) ) )  e.  CC )
504nn0cnd 10850 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  ->  N  e.  CC )
5149, 50pncan3d 9925 . . . 4  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( ( O `
 A )  x.  ( |_ `  ( N  /  ( O `  A ) ) ) )  +  ( N  -  ( ( O `
 A )  x.  ( |_ `  ( N  /  ( O `  A ) ) ) ) ) )  =  N )
5248, 51eqtrd 2495 . . 3  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( ( O `
 A )  x.  ( |_ `  ( N  /  ( O `  A ) ) ) )  +  ( N  mod  ( O `  A ) ) )  =  N )
5352oveq1d 6285 . 2  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( ( ( O `  A )  x.  ( |_ `  ( N  /  ( O `  A )
) ) )  +  ( N  mod  ( O `  A )
) )  .x.  A
)  =  ( N 
.x.  A ) )
5423, 24mulgnn0cl 16357 . . . 4  |-  ( ( G  e.  Mnd  /\  ( N  mod  ( O `
 A ) )  e.  NN0  /\  A  e.  X )  ->  (
( N  mod  ( O `  A )
)  .x.  A )  e.  X )
551, 21, 22, 54syl3anc 1226 . . 3  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( N  mod  ( O `  A ) )  .x.  A )  e.  X )
5623, 25, 35mndlid 16140 . . 3  |-  ( ( G  e.  Mnd  /\  ( ( N  mod  ( O `  A ) )  .x.  A )  e.  X )  -> 
(  .0.  ( +g  `  G ) ( ( N  mod  ( O `
 A ) ) 
.x.  A ) )  =  ( ( N  mod  ( O `  A ) )  .x.  A ) )
571, 55, 56syl2anc 659 . 2  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
(  .0.  ( +g  `  G ) ( ( N  mod  ( O `
 A ) ) 
.x.  A ) )  =  ( ( N  mod  ( O `  A ) )  .x.  A ) )
5845, 53, 573eqtr3rd 2504 1  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( N  mod  ( O `  A ) )  .x.  A )  =  ( N  .x.  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823   class class class wbr 4439   ` cfv 5570  (class class class)co 6270   RRcr 9480   0cc0 9481    + caddc 9484    x. cmul 9486    < clt 9617    <_ cle 9618    - cmin 9796    / cdiv 10202   NNcn 10531   NN0cn0 10791   ZZcz 10860   RR+crp 11221   |_cfl 11908    mod cmo 11978   Basecbs 14716   +g cplusg 14784   0gc0g 14929   Mndcmnd 16118  .gcmg 16255   odcod 16748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-inf2 8049  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-sup 7893  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-n0 10792  df-z 10861  df-uz 11083  df-rp 11222  df-fz 11676  df-fl 11910  df-mod 11979  df-seq 12090  df-0g 14931  df-mgm 16071  df-sgrp 16110  df-mnd 16120  df-mulg 16259  df-od 16752
This theorem is referenced by:  mndodcong  16765
  Copyright terms: Public domain W3C validator