MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odlem2 Structured version   Unicode version

Theorem odlem2 16352
Description: Any positive annihilator of a group element is an upper bound on the (positive) order of the element. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
odcl.1  |-  X  =  ( Base `  G
)
odcl.2  |-  O  =  ( od `  G
)
odid.3  |-  .x.  =  (.g
`  G )
odid.4  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
odlem2  |-  ( ( A  e.  X  /\  N  e.  NN  /\  ( N  .x.  A )  =  .0.  )  ->  ( O `  A )  e.  ( 1 ... N
) )

Proof of Theorem odlem2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 oveq1 6282 . . . . 5  |-  ( y  =  N  ->  (
y  .x.  A )  =  ( N  .x.  A ) )
21eqeq1d 2462 . . . 4  |-  ( y  =  N  ->  (
( y  .x.  A
)  =  .0.  <->  ( N  .x.  A )  =  .0.  ) )
32elrab 3254 . . 3  |-  ( N  e.  { y  e.  NN  |  ( y 
.x.  A )  =  .0.  }  <->  ( N  e.  NN  /\  ( N 
.x.  A )  =  .0.  ) )
4 odcl.1 . . . . . 6  |-  X  =  ( Base `  G
)
5 odid.3 . . . . . 6  |-  .x.  =  (.g
`  G )
6 odid.4 . . . . . 6  |-  .0.  =  ( 0g `  G )
7 odcl.2 . . . . . 6  |-  O  =  ( od `  G
)
8 eqid 2460 . . . . . 6  |-  { y  e.  NN  |  ( y  .x.  A )  =  .0.  }  =  { y  e.  NN  |  ( y  .x.  A )  =  .0. 
}
94, 5, 6, 7, 8odval 16347 . . . . 5  |-  ( A  e.  X  ->  ( O `  A )  =  if ( { y  e.  NN  |  ( y  .x.  A )  =  .0.  }  =  (/)
,  0 ,  sup ( { y  e.  NN  |  ( y  .x.  A )  =  .0. 
} ,  RR ,  `'  <  ) ) )
10 n0i 3783 . . . . . 6  |-  ( N  e.  { y  e.  NN  |  ( y 
.x.  A )  =  .0.  }  ->  -.  { y  e.  NN  | 
( y  .x.  A
)  =  .0.  }  =  (/) )
11 iffalse 3941 . . . . . 6  |-  ( -. 
{ y  e.  NN  |  ( y  .x.  A )  =  .0. 
}  =  (/)  ->  if ( { y  e.  NN  |  ( y  .x.  A )  =  .0. 
}  =  (/) ,  0 ,  sup ( { y  e.  NN  | 
( y  .x.  A
)  =  .0.  } ,  RR ,  `'  <  ) )  =  sup ( { y  e.  NN  |  ( y  .x.  A )  =  .0. 
} ,  RR ,  `'  <  ) )
1210, 11syl 16 . . . . 5  |-  ( N  e.  { y  e.  NN  |  ( y 
.x.  A )  =  .0.  }  ->  if ( { y  e.  NN  |  ( y  .x.  A )  =  .0. 
}  =  (/) ,  0 ,  sup ( { y  e.  NN  | 
( y  .x.  A
)  =  .0.  } ,  RR ,  `'  <  ) )  =  sup ( { y  e.  NN  |  ( y  .x.  A )  =  .0. 
} ,  RR ,  `'  <  ) )
139, 12sylan9eq 2521 . . . 4  |-  ( ( A  e.  X  /\  N  e.  { y  e.  NN  |  ( y 
.x.  A )  =  .0.  } )  -> 
( O `  A
)  =  sup ( { y  e.  NN  |  ( y  .x.  A )  =  .0. 
} ,  RR ,  `'  <  ) )
14 ssrab2 3578 . . . . . 6  |-  { y  e.  NN  |  ( y  .x.  A )  =  .0.  }  C_  NN
15 nnuz 11106 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
1614, 15sseqtri 3529 . . . . . . 7  |-  { y  e.  NN  |  ( y  .x.  A )  =  .0.  }  C_  ( ZZ>= `  1 )
17 ne0i 3784 . . . . . . . 8  |-  ( N  e.  { y  e.  NN  |  ( y 
.x.  A )  =  .0.  }  ->  { y  e.  NN  |  ( y  .x.  A )  =  .0.  }  =/=  (/) )
1817adantl 466 . . . . . . 7  |-  ( ( A  e.  X  /\  N  e.  { y  e.  NN  |  ( y 
.x.  A )  =  .0.  } )  ->  { y  e.  NN  |  ( y  .x.  A )  =  .0. 
}  =/=  (/) )
19 infmssuzcl 11154 . . . . . . 7  |-  ( ( { y  e.  NN  |  ( y  .x.  A )  =  .0. 
}  C_  ( ZZ>= ` 
1 )  /\  {
y  e.  NN  | 
( y  .x.  A
)  =  .0.  }  =/=  (/) )  ->  sup ( { y  e.  NN  |  ( y  .x.  A )  =  .0. 
} ,  RR ,  `'  <  )  e.  {
y  e.  NN  | 
( y  .x.  A
)  =  .0.  }
)
2016, 18, 19sylancr 663 . . . . . 6  |-  ( ( A  e.  X  /\  N  e.  { y  e.  NN  |  ( y 
.x.  A )  =  .0.  } )  ->  sup ( { y  e.  NN  |  ( y 
.x.  A )  =  .0.  } ,  RR ,  `'  <  )  e. 
{ y  e.  NN  |  ( y  .x.  A )  =  .0. 
} )
2114, 20sseldi 3495 . . . . 5  |-  ( ( A  e.  X  /\  N  e.  { y  e.  NN  |  ( y 
.x.  A )  =  .0.  } )  ->  sup ( { y  e.  NN  |  ( y 
.x.  A )  =  .0.  } ,  RR ,  `'  <  )  e.  NN )
22 infmssuzle 11153 . . . . . . 7  |-  ( ( { y  e.  NN  |  ( y  .x.  A )  =  .0. 
}  C_  ( ZZ>= ` 
1 )  /\  N  e.  { y  e.  NN  |  ( y  .x.  A )  =  .0. 
} )  ->  sup ( { y  e.  NN  |  ( y  .x.  A )  =  .0. 
} ,  RR ,  `'  <  )  <_  N
)
2316, 22mpan 670 . . . . . 6  |-  ( N  e.  { y  e.  NN  |  ( y 
.x.  A )  =  .0.  }  ->  sup ( { y  e.  NN  |  ( y  .x.  A )  =  .0. 
} ,  RR ,  `'  <  )  <_  N
)
2423adantl 466 . . . . 5  |-  ( ( A  e.  X  /\  N  e.  { y  e.  NN  |  ( y 
.x.  A )  =  .0.  } )  ->  sup ( { y  e.  NN  |  ( y 
.x.  A )  =  .0.  } ,  RR ,  `'  <  )  <_  N )
25 elrabi 3251 . . . . . . . 8  |-  ( N  e.  { y  e.  NN  |  ( y 
.x.  A )  =  .0.  }  ->  N  e.  NN )
2625nnzd 10954 . . . . . . 7  |-  ( N  e.  { y  e.  NN  |  ( y 
.x.  A )  =  .0.  }  ->  N  e.  ZZ )
27 fznn 11736 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( sup ( { y  e.  NN  |  ( y 
.x.  A )  =  .0.  } ,  RR ,  `'  <  )  e.  ( 1 ... N
)  <->  ( sup ( { y  e.  NN  |  ( y  .x.  A )  =  .0. 
} ,  RR ,  `'  <  )  e.  NN  /\ 
sup ( { y  e.  NN  |  ( y  .x.  A )  =  .0.  } ,  RR ,  `'  <  )  <_  N ) ) )
2826, 27syl 16 . . . . . 6  |-  ( N  e.  { y  e.  NN  |  ( y 
.x.  A )  =  .0.  }  ->  ( sup ( { y  e.  NN  |  ( y 
.x.  A )  =  .0.  } ,  RR ,  `'  <  )  e.  ( 1 ... N
)  <->  ( sup ( { y  e.  NN  |  ( y  .x.  A )  =  .0. 
} ,  RR ,  `'  <  )  e.  NN  /\ 
sup ( { y  e.  NN  |  ( y  .x.  A )  =  .0.  } ,  RR ,  `'  <  )  <_  N ) ) )
2928adantl 466 . . . . 5  |-  ( ( A  e.  X  /\  N  e.  { y  e.  NN  |  ( y 
.x.  A )  =  .0.  } )  -> 
( sup ( { y  e.  NN  | 
( y  .x.  A
)  =  .0.  } ,  RR ,  `'  <  )  e.  ( 1 ... N )  <->  ( sup ( { y  e.  NN  |  ( y  .x.  A )  =  .0. 
} ,  RR ,  `'  <  )  e.  NN  /\ 
sup ( { y  e.  NN  |  ( y  .x.  A )  =  .0.  } ,  RR ,  `'  <  )  <_  N ) ) )
3021, 24, 29mpbir2and 915 . . . 4  |-  ( ( A  e.  X  /\  N  e.  { y  e.  NN  |  ( y 
.x.  A )  =  .0.  } )  ->  sup ( { y  e.  NN  |  ( y 
.x.  A )  =  .0.  } ,  RR ,  `'  <  )  e.  ( 1 ... N
) )
3113, 30eqeltrd 2548 . . 3  |-  ( ( A  e.  X  /\  N  e.  { y  e.  NN  |  ( y 
.x.  A )  =  .0.  } )  -> 
( O `  A
)  e.  ( 1 ... N ) )
323, 31sylan2br 476 . 2  |-  ( ( A  e.  X  /\  ( N  e.  NN  /\  ( N  .x.  A
)  =  .0.  )
)  ->  ( O `  A )  e.  ( 1 ... N ) )
33323impb 1187 1  |-  ( ( A  e.  X  /\  N  e.  NN  /\  ( N  .x.  A )  =  .0.  )  ->  ( O `  A )  e.  ( 1 ... N
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762    =/= wne 2655   {crab 2811    C_ wss 3469   (/)c0 3778   ifcif 3932   class class class wbr 4440   `'ccnv 4991   ` cfv 5579  (class class class)co 6275   supcsup 7889   RRcr 9480   0cc0 9481   1c1 9482    < clt 9617    <_ cle 9618   NNcn 10525   ZZcz 10853   ZZ>=cuz 11071   ...cfz 11661   Basecbs 14479   0gc0g 14684  .gcmg 15720   odcod 16338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-1st 6774  df-2nd 6775  df-recs 7032  df-rdg 7066  df-er 7301  df-en 7507  df-dom 7508  df-sdom 7509  df-sup 7890  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-nn 10526  df-n0 10785  df-z 10854  df-uz 11072  df-fz 11662  df-od 16342
This theorem is referenced by:  mndodconglem  16354  oddvdsnn0  16357  odnncl  16358  oddvds  16360  od1  16370
  Copyright terms: Public domain W3C validator