MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odlem2 Structured version   Unicode version

Theorem odlem2 16887
Description: Any positive annihilator of a group element is an upper bound on the (positive) order of the element. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
odcl.1  |-  X  =  ( Base `  G
)
odcl.2  |-  O  =  ( od `  G
)
odid.3  |-  .x.  =  (.g
`  G )
odid.4  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
odlem2  |-  ( ( A  e.  X  /\  N  e.  NN  /\  ( N  .x.  A )  =  .0.  )  ->  ( O `  A )  e.  ( 1 ... N
) )

Proof of Theorem odlem2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 oveq1 6285 . . . . 5  |-  ( y  =  N  ->  (
y  .x.  A )  =  ( N  .x.  A ) )
21eqeq1d 2404 . . . 4  |-  ( y  =  N  ->  (
( y  .x.  A
)  =  .0.  <->  ( N  .x.  A )  =  .0.  ) )
32elrab 3207 . . 3  |-  ( N  e.  { y  e.  NN  |  ( y 
.x.  A )  =  .0.  }  <->  ( N  e.  NN  /\  ( N 
.x.  A )  =  .0.  ) )
4 odcl.1 . . . . . 6  |-  X  =  ( Base `  G
)
5 odid.3 . . . . . 6  |-  .x.  =  (.g
`  G )
6 odid.4 . . . . . 6  |-  .0.  =  ( 0g `  G )
7 odcl.2 . . . . . 6  |-  O  =  ( od `  G
)
8 eqid 2402 . . . . . 6  |-  { y  e.  NN  |  ( y  .x.  A )  =  .0.  }  =  { y  e.  NN  |  ( y  .x.  A )  =  .0. 
}
94, 5, 6, 7, 8odval 16882 . . . . 5  |-  ( A  e.  X  ->  ( O `  A )  =  if ( { y  e.  NN  |  ( y  .x.  A )  =  .0.  }  =  (/)
,  0 ,  sup ( { y  e.  NN  |  ( y  .x.  A )  =  .0. 
} ,  RR ,  `'  <  ) ) )
10 n0i 3743 . . . . . 6  |-  ( N  e.  { y  e.  NN  |  ( y 
.x.  A )  =  .0.  }  ->  -.  { y  e.  NN  | 
( y  .x.  A
)  =  .0.  }  =  (/) )
1110iffalsed 3896 . . . . 5  |-  ( N  e.  { y  e.  NN  |  ( y 
.x.  A )  =  .0.  }  ->  if ( { y  e.  NN  |  ( y  .x.  A )  =  .0. 
}  =  (/) ,  0 ,  sup ( { y  e.  NN  | 
( y  .x.  A
)  =  .0.  } ,  RR ,  `'  <  ) )  =  sup ( { y  e.  NN  |  ( y  .x.  A )  =  .0. 
} ,  RR ,  `'  <  ) )
129, 11sylan9eq 2463 . . . 4  |-  ( ( A  e.  X  /\  N  e.  { y  e.  NN  |  ( y 
.x.  A )  =  .0.  } )  -> 
( O `  A
)  =  sup ( { y  e.  NN  |  ( y  .x.  A )  =  .0. 
} ,  RR ,  `'  <  ) )
13 ssrab2 3524 . . . . . 6  |-  { y  e.  NN  |  ( y  .x.  A )  =  .0.  }  C_  NN
14 nnuz 11162 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
1513, 14sseqtri 3474 . . . . . . 7  |-  { y  e.  NN  |  ( y  .x.  A )  =  .0.  }  C_  ( ZZ>= `  1 )
16 ne0i 3744 . . . . . . . 8  |-  ( N  e.  { y  e.  NN  |  ( y 
.x.  A )  =  .0.  }  ->  { y  e.  NN  |  ( y  .x.  A )  =  .0.  }  =/=  (/) )
1716adantl 464 . . . . . . 7  |-  ( ( A  e.  X  /\  N  e.  { y  e.  NN  |  ( y 
.x.  A )  =  .0.  } )  ->  { y  e.  NN  |  ( y  .x.  A )  =  .0. 
}  =/=  (/) )
18 infmssuzcl 11210 . . . . . . 7  |-  ( ( { y  e.  NN  |  ( y  .x.  A )  =  .0. 
}  C_  ( ZZ>= ` 
1 )  /\  {
y  e.  NN  | 
( y  .x.  A
)  =  .0.  }  =/=  (/) )  ->  sup ( { y  e.  NN  |  ( y  .x.  A )  =  .0. 
} ,  RR ,  `'  <  )  e.  {
y  e.  NN  | 
( y  .x.  A
)  =  .0.  }
)
1915, 17, 18sylancr 661 . . . . . 6  |-  ( ( A  e.  X  /\  N  e.  { y  e.  NN  |  ( y 
.x.  A )  =  .0.  } )  ->  sup ( { y  e.  NN  |  ( y 
.x.  A )  =  .0.  } ,  RR ,  `'  <  )  e. 
{ y  e.  NN  |  ( y  .x.  A )  =  .0. 
} )
2013, 19sseldi 3440 . . . . 5  |-  ( ( A  e.  X  /\  N  e.  { y  e.  NN  |  ( y 
.x.  A )  =  .0.  } )  ->  sup ( { y  e.  NN  |  ( y 
.x.  A )  =  .0.  } ,  RR ,  `'  <  )  e.  NN )
21 infmssuzle 11209 . . . . . . 7  |-  ( ( { y  e.  NN  |  ( y  .x.  A )  =  .0. 
}  C_  ( ZZ>= ` 
1 )  /\  N  e.  { y  e.  NN  |  ( y  .x.  A )  =  .0. 
} )  ->  sup ( { y  e.  NN  |  ( y  .x.  A )  =  .0. 
} ,  RR ,  `'  <  )  <_  N
)
2215, 21mpan 668 . . . . . 6  |-  ( N  e.  { y  e.  NN  |  ( y 
.x.  A )  =  .0.  }  ->  sup ( { y  e.  NN  |  ( y  .x.  A )  =  .0. 
} ,  RR ,  `'  <  )  <_  N
)
2322adantl 464 . . . . 5  |-  ( ( A  e.  X  /\  N  e.  { y  e.  NN  |  ( y 
.x.  A )  =  .0.  } )  ->  sup ( { y  e.  NN  |  ( y 
.x.  A )  =  .0.  } ,  RR ,  `'  <  )  <_  N )
24 elrabi 3204 . . . . . . . 8  |-  ( N  e.  { y  e.  NN  |  ( y 
.x.  A )  =  .0.  }  ->  N  e.  NN )
2524nnzd 11007 . . . . . . 7  |-  ( N  e.  { y  e.  NN  |  ( y 
.x.  A )  =  .0.  }  ->  N  e.  ZZ )
26 fznn 11802 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( sup ( { y  e.  NN  |  ( y 
.x.  A )  =  .0.  } ,  RR ,  `'  <  )  e.  ( 1 ... N
)  <->  ( sup ( { y  e.  NN  |  ( y  .x.  A )  =  .0. 
} ,  RR ,  `'  <  )  e.  NN  /\ 
sup ( { y  e.  NN  |  ( y  .x.  A )  =  .0.  } ,  RR ,  `'  <  )  <_  N ) ) )
2725, 26syl 17 . . . . . 6  |-  ( N  e.  { y  e.  NN  |  ( y 
.x.  A )  =  .0.  }  ->  ( sup ( { y  e.  NN  |  ( y 
.x.  A )  =  .0.  } ,  RR ,  `'  <  )  e.  ( 1 ... N
)  <->  ( sup ( { y  e.  NN  |  ( y  .x.  A )  =  .0. 
} ,  RR ,  `'  <  )  e.  NN  /\ 
sup ( { y  e.  NN  |  ( y  .x.  A )  =  .0.  } ,  RR ,  `'  <  )  <_  N ) ) )
2827adantl 464 . . . . 5  |-  ( ( A  e.  X  /\  N  e.  { y  e.  NN  |  ( y 
.x.  A )  =  .0.  } )  -> 
( sup ( { y  e.  NN  | 
( y  .x.  A
)  =  .0.  } ,  RR ,  `'  <  )  e.  ( 1 ... N )  <->  ( sup ( { y  e.  NN  |  ( y  .x.  A )  =  .0. 
} ,  RR ,  `'  <  )  e.  NN  /\ 
sup ( { y  e.  NN  |  ( y  .x.  A )  =  .0.  } ,  RR ,  `'  <  )  <_  N ) ) )
2920, 23, 28mpbir2and 923 . . . 4  |-  ( ( A  e.  X  /\  N  e.  { y  e.  NN  |  ( y 
.x.  A )  =  .0.  } )  ->  sup ( { y  e.  NN  |  ( y 
.x.  A )  =  .0.  } ,  RR ,  `'  <  )  e.  ( 1 ... N
) )
3012, 29eqeltrd 2490 . . 3  |-  ( ( A  e.  X  /\  N  e.  { y  e.  NN  |  ( y 
.x.  A )  =  .0.  } )  -> 
( O `  A
)  e.  ( 1 ... N ) )
313, 30sylan2br 474 . 2  |-  ( ( A  e.  X  /\  ( N  e.  NN  /\  ( N  .x.  A
)  =  .0.  )
)  ->  ( O `  A )  e.  ( 1 ... N ) )
32313impb 1193 1  |-  ( ( A  e.  X  /\  N  e.  NN  /\  ( N  .x.  A )  =  .0.  )  ->  ( O `  A )  e.  ( 1 ... N
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 974    = wceq 1405    e. wcel 1842    =/= wne 2598   {crab 2758    C_ wss 3414   (/)c0 3738   ifcif 3885   class class class wbr 4395   `'ccnv 4822   ` cfv 5569  (class class class)co 6278   supcsup 7934   RRcr 9521   0cc0 9522   1c1 9523    < clt 9658    <_ cle 9659   NNcn 10576   ZZcz 10905   ZZ>=cuz 11127   ...cfz 11726   Basecbs 14841   0gc0g 15054  .gcmg 16380   odcod 16873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-cnex 9578  ax-resscn 9579  ax-1cn 9580  ax-icn 9581  ax-addcl 9582  ax-addrcl 9583  ax-mulcl 9584  ax-mulrcl 9585  ax-mulcom 9586  ax-addass 9587  ax-mulass 9588  ax-distr 9589  ax-i2m1 9590  ax-1ne0 9591  ax-1rid 9592  ax-rnegex 9593  ax-rrecex 9594  ax-cnre 9595  ax-pre-lttri 9596  ax-pre-lttrn 9597  ax-pre-ltadd 9598  ax-pre-mulgt0 9599
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-om 6684  df-1st 6784  df-2nd 6785  df-wrecs 7013  df-recs 7075  df-rdg 7113  df-er 7348  df-en 7555  df-dom 7556  df-sdom 7557  df-sup 7935  df-pnf 9660  df-mnf 9661  df-xr 9662  df-ltxr 9663  df-le 9664  df-sub 9843  df-neg 9844  df-nn 10577  df-n0 10837  df-z 10906  df-uz 11128  df-fz 11727  df-od 16877
This theorem is referenced by:  mndodconglem  16889  oddvdsnn0  16892  odnncl  16893  oddvds  16895  od1  16905
  Copyright terms: Public domain W3C validator