MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odf1o2 Structured version   Visualization version   Unicode version

Theorem odf1o2 17277
Description: An element with nonzero order has as many multiples as its order. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Hypotheses
Ref Expression
odf1o1.x  |-  X  =  ( Base `  G
)
odf1o1.t  |-  .x.  =  (.g
`  G )
odf1o1.o  |-  O  =  ( od `  G
)
odf1o1.k  |-  K  =  (mrCls `  (SubGrp `  G
) )
Assertion
Ref Expression
odf1o2  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  -> 
( x  e.  ( 0..^ ( O `  A ) )  |->  ( x  .x.  A ) ) : ( 0..^ ( O `  A
) ) -1-1-onto-> ( K `  { A } ) )
Distinct variable groups:    x, A    x, G    x, K    x, O    x,  .x.    x, X

Proof of Theorem odf1o2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 simpl1 1017 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  /\  x  e.  ( 0..^ ( O `  A
) ) )  ->  G  e.  Grp )
2 elfzoelz 11957 . . . . . . . 8  |-  ( x  e.  ( 0..^ ( O `  A ) )  ->  x  e.  ZZ )
32adantl 472 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  /\  x  e.  ( 0..^ ( O `  A
) ) )  ->  x  e.  ZZ )
4 simpl2 1018 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  /\  x  e.  ( 0..^ ( O `  A
) ) )  ->  A  e.  X )
5 odf1o1.x . . . . . . . 8  |-  X  =  ( Base `  G
)
6 odf1o1.t . . . . . . . 8  |-  .x.  =  (.g
`  G )
75, 6mulgcl 16830 . . . . . . 7  |-  ( ( G  e.  Grp  /\  x  e.  ZZ  /\  A  e.  X )  ->  (
x  .x.  A )  e.  X )
81, 3, 4, 7syl3anc 1276 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  /\  x  e.  ( 0..^ ( O `  A
) ) )  -> 
( x  .x.  A
)  e.  X )
98ex 440 . . . . 5  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  -> 
( x  e.  ( 0..^ ( O `  A ) )  -> 
( x  .x.  A
)  e.  X ) )
10 simpl3 1019 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  /\  ( x  e.  (
0..^ ( O `  A ) )  /\  y  e.  ( 0..^ ( O `  A
) ) ) )  ->  ( O `  A )  e.  NN )
1110nncnd 10658 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  /\  ( x  e.  (
0..^ ( O `  A ) )  /\  y  e.  ( 0..^ ( O `  A
) ) ) )  ->  ( O `  A )  e.  CC )
1211subid1d 10006 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  /\  ( x  e.  (
0..^ ( O `  A ) )  /\  y  e.  ( 0..^ ( O `  A
) ) ) )  ->  ( ( O `
 A )  - 
0 )  =  ( O `  A ) )
1312breq1d 4428 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  /\  ( x  e.  (
0..^ ( O `  A ) )  /\  y  e.  ( 0..^ ( O `  A
) ) ) )  ->  ( ( ( O `  A )  -  0 )  ||  ( x  -  y
)  <->  ( O `  A )  ||  (
x  -  y ) ) )
14 fzocongeq 14414 . . . . . . . 8  |-  ( ( x  e.  ( 0..^ ( O `  A
) )  /\  y  e.  ( 0..^ ( O `
 A ) ) )  ->  ( (
( O `  A
)  -  0 ) 
||  ( x  -  y )  <->  x  =  y ) )
1514adantl 472 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  /\  ( x  e.  (
0..^ ( O `  A ) )  /\  y  e.  ( 0..^ ( O `  A
) ) ) )  ->  ( ( ( O `  A )  -  0 )  ||  ( x  -  y
)  <->  x  =  y
) )
16 simpl1 1017 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  /\  ( x  e.  (
0..^ ( O `  A ) )  /\  y  e.  ( 0..^ ( O `  A
) ) ) )  ->  G  e.  Grp )
17 simpl2 1018 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  /\  ( x  e.  (
0..^ ( O `  A ) )  /\  y  e.  ( 0..^ ( O `  A
) ) ) )  ->  A  e.  X
)
182ad2antrl 739 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  /\  ( x  e.  (
0..^ ( O `  A ) )  /\  y  e.  ( 0..^ ( O `  A
) ) ) )  ->  x  e.  ZZ )
19 elfzoelz 11957 . . . . . . . . 9  |-  ( y  e.  ( 0..^ ( O `  A ) )  ->  y  e.  ZZ )
2019ad2antll 740 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  /\  ( x  e.  (
0..^ ( O `  A ) )  /\  y  e.  ( 0..^ ( O `  A
) ) ) )  ->  y  e.  ZZ )
21 odf1o1.o . . . . . . . . 9  |-  O  =  ( od `  G
)
22 eqid 2462 . . . . . . . . 9  |-  ( 0g
`  G )  =  ( 0g `  G
)
235, 21, 6, 22odcong 17253 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( ( O `  A )  ||  ( x  -  y
)  <->  ( x  .x.  A )  =  ( y  .x.  A ) ) )
2416, 17, 18, 20, 23syl112anc 1280 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  /\  ( x  e.  (
0..^ ( O `  A ) )  /\  y  e.  ( 0..^ ( O `  A
) ) ) )  ->  ( ( O `
 A )  ||  ( x  -  y
)  <->  ( x  .x.  A )  =  ( y  .x.  A ) ) )
2513, 15, 243bitr3rd 292 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  /\  ( x  e.  (
0..^ ( O `  A ) )  /\  y  e.  ( 0..^ ( O `  A
) ) ) )  ->  ( ( x 
.x.  A )  =  ( y  .x.  A
)  <->  x  =  y
) )
2625ex 440 . . . . 5  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  -> 
( ( x  e.  ( 0..^ ( O `
 A ) )  /\  y  e.  ( 0..^ ( O `  A ) ) )  ->  ( ( x 
.x.  A )  =  ( y  .x.  A
)  <->  x  =  y
) ) )
279, 26dom2lem 7640 . . . 4  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  -> 
( x  e.  ( 0..^ ( O `  A ) )  |->  ( x  .x.  A ) ) : ( 0..^ ( O `  A
) ) -1-1-> X )
28 f1fn 5807 . . . 4  |-  ( ( x  e.  ( 0..^ ( O `  A
) )  |->  ( x 
.x.  A ) ) : ( 0..^ ( O `  A ) ) -1-1-> X  ->  ( x  e.  ( 0..^ ( O `  A ) )  |->  ( x  .x.  A ) )  Fn  ( 0..^ ( O `
 A ) ) )
2927, 28syl 17 . . 3  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  -> 
( x  e.  ( 0..^ ( O `  A ) )  |->  ( x  .x.  A ) )  Fn  ( 0..^ ( O `  A
) ) )
30 resss 5150 . . . . . . 7  |-  ( ( x  e.  ZZ  |->  ( x  .x.  A ) )  |`  ( 0..^ ( O `  A
) ) )  C_  ( x  e.  ZZ  |->  ( x  .x.  A ) )
312ssriv 3448 . . . . . . . 8  |-  ( 0..^ ( O `  A
) )  C_  ZZ
32 resmpt 5176 . . . . . . . 8  |-  ( ( 0..^ ( O `  A ) )  C_  ZZ  ->  ( ( x  e.  ZZ  |->  ( x 
.x.  A ) )  |`  ( 0..^ ( O `
 A ) ) )  =  ( x  e.  ( 0..^ ( O `  A ) )  |->  ( x  .x.  A ) ) )
3331, 32ax-mp 5 . . . . . . 7  |-  ( ( x  e.  ZZ  |->  ( x  .x.  A ) )  |`  ( 0..^ ( O `  A
) ) )  =  ( x  e.  ( 0..^ ( O `  A ) )  |->  ( x  .x.  A ) )
34 oveq1 6327 . . . . . . . 8  |-  ( x  =  y  ->  (
x  .x.  A )  =  ( y  .x.  A ) )
3534cbvmptv 4511 . . . . . . 7  |-  ( x  e.  ZZ  |->  ( x 
.x.  A ) )  =  ( y  e.  ZZ  |->  ( y  .x.  A ) )
3630, 33, 353sstr3i 3482 . . . . . 6  |-  ( x  e.  ( 0..^ ( O `  A ) )  |->  ( x  .x.  A ) )  C_  ( y  e.  ZZ  |->  ( y  .x.  A
) )
37 rnss 5085 . . . . . 6  |-  ( ( x  e.  ( 0..^ ( O `  A
) )  |->  ( x 
.x.  A ) ) 
C_  ( y  e.  ZZ  |->  ( y  .x.  A ) )  ->  ran  ( x  e.  ( 0..^ ( O `  A ) )  |->  ( x  .x.  A ) )  C_  ran  ( y  e.  ZZ  |->  ( y 
.x.  A ) ) )
3836, 37mp1i 13 . . . . 5  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  ->  ran  ( x  e.  ( 0..^ ( O `  A ) )  |->  ( x  .x.  A ) )  C_  ran  ( y  e.  ZZ  |->  ( y 
.x.  A ) ) )
39 simpr 467 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  /\  y  e.  ZZ )  ->  y  e.  ZZ )
40 simpl3 1019 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  /\  y  e.  ZZ )  ->  ( O `  A
)  e.  NN )
41 zmodfzo 12157 . . . . . . . . . 10  |-  ( ( y  e.  ZZ  /\  ( O `  A )  e.  NN )  -> 
( y  mod  ( O `  A )
)  e.  ( 0..^ ( O `  A
) ) )
4239, 40, 41syl2anc 671 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  /\  y  e.  ZZ )  ->  ( y  mod  ( O `  A )
)  e.  ( 0..^ ( O `  A
) ) )
435, 21, 6, 22odmod 17250 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  y  e.  ZZ )  /\  ( O `  A
)  e.  NN )  ->  ( ( y  mod  ( O `  A ) )  .x.  A )  =  ( y  .x.  A ) )
44433an1rs 1229 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  /\  y  e.  ZZ )  ->  ( ( y  mod  ( O `  A
) )  .x.  A
)  =  ( y 
.x.  A ) )
4544eqcomd 2468 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  /\  y  e.  ZZ )  ->  ( y  .x.  A
)  =  ( ( y  mod  ( O `
 A ) ) 
.x.  A ) )
46 oveq1 6327 . . . . . . . . . . 11  |-  ( x  =  ( y  mod  ( O `  A
) )  ->  (
x  .x.  A )  =  ( ( y  mod  ( O `  A ) )  .x.  A ) )
4746eqeq2d 2472 . . . . . . . . . 10  |-  ( x  =  ( y  mod  ( O `  A
) )  ->  (
( y  .x.  A
)  =  ( x 
.x.  A )  <->  ( y  .x.  A )  =  ( ( y  mod  ( O `  A )
)  .x.  A )
) )
4847rspcev 3162 . . . . . . . . 9  |-  ( ( ( y  mod  ( O `  A )
)  e.  ( 0..^ ( O `  A
) )  /\  (
y  .x.  A )  =  ( ( y  mod  ( O `  A ) )  .x.  A ) )  ->  E. x  e.  (
0..^ ( O `  A ) ) ( y  .x.  A )  =  ( x  .x.  A ) )
4942, 45, 48syl2anc 671 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  /\  y  e.  ZZ )  ->  E. x  e.  ( 0..^ ( O `  A ) ) ( y  .x.  A )  =  ( x  .x.  A ) )
50 ovex 6348 . . . . . . . . 9  |-  ( y 
.x.  A )  e. 
_V
51 eqid 2462 . . . . . . . . . 10  |-  ( x  e.  ( 0..^ ( O `  A ) )  |->  ( x  .x.  A ) )  =  ( x  e.  ( 0..^ ( O `  A ) )  |->  ( x  .x.  A ) )
5251elrnmpt 5103 . . . . . . . . 9  |-  ( ( y  .x.  A )  e.  _V  ->  (
( y  .x.  A
)  e.  ran  (
x  e.  ( 0..^ ( O `  A
) )  |->  ( x 
.x.  A ) )  <->  E. x  e.  (
0..^ ( O `  A ) ) ( y  .x.  A )  =  ( x  .x.  A ) ) )
5350, 52ax-mp 5 . . . . . . . 8  |-  ( ( y  .x.  A )  e.  ran  ( x  e.  ( 0..^ ( O `  A ) )  |->  ( x  .x.  A ) )  <->  E. x  e.  ( 0..^ ( O `
 A ) ) ( y  .x.  A
)  =  ( x 
.x.  A ) )
5449, 53sylibr 217 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  /\  y  e.  ZZ )  ->  ( y  .x.  A
)  e.  ran  (
x  e.  ( 0..^ ( O `  A
) )  |->  ( x 
.x.  A ) ) )
55 eqid 2462 . . . . . . 7  |-  ( y  e.  ZZ  |->  ( y 
.x.  A ) )  =  ( y  e.  ZZ  |->  ( y  .x.  A ) )
5654, 55fmptd 6074 . . . . . 6  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  -> 
( y  e.  ZZ  |->  ( y  .x.  A
) ) : ZZ --> ran  ( x  e.  ( 0..^ ( O `  A ) )  |->  ( x  .x.  A ) ) )
57 frn 5762 . . . . . 6  |-  ( ( y  e.  ZZ  |->  ( y  .x.  A ) ) : ZZ --> ran  (
x  e.  ( 0..^ ( O `  A
) )  |->  ( x 
.x.  A ) )  ->  ran  ( y  e.  ZZ  |->  ( y  .x.  A ) )  C_  ran  ( x  e.  ( 0..^ ( O `  A ) )  |->  ( x  .x.  A ) ) )
5856, 57syl 17 . . . . 5  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  ->  ran  ( y  e.  ZZ  |->  ( y  .x.  A
) )  C_  ran  ( x  e.  (
0..^ ( O `  A ) )  |->  ( x  .x.  A ) ) )
5938, 58eqssd 3461 . . . 4  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  ->  ran  ( x  e.  ( 0..^ ( O `  A ) )  |->  ( x  .x.  A ) )  =  ran  (
y  e.  ZZ  |->  ( y  .x.  A ) ) )
60 odf1o1.k . . . . . 6  |-  K  =  (mrCls `  (SubGrp `  G
) )
615, 6, 55, 60cycsubg2 16909 . . . . 5  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( K `  { A } )  =  ran  ( y  e.  ZZ  |->  ( y  .x.  A
) ) )
62613adant3 1034 . . . 4  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  -> 
( K `  { A } )  =  ran  ( y  e.  ZZ  |->  ( y  .x.  A
) ) )
6359, 62eqtr4d 2499 . . 3  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  ->  ran  ( x  e.  ( 0..^ ( O `  A ) )  |->  ( x  .x.  A ) )  =  ( K `
 { A }
) )
64 df-fo 5611 . . 3  |-  ( ( x  e.  ( 0..^ ( O `  A
) )  |->  ( x 
.x.  A ) ) : ( 0..^ ( O `  A ) ) -onto-> ( K `  { A } )  <->  ( (
x  e.  ( 0..^ ( O `  A
) )  |->  ( x 
.x.  A ) )  Fn  ( 0..^ ( O `  A ) )  /\  ran  (
x  e.  ( 0..^ ( O `  A
) )  |->  ( x 
.x.  A ) )  =  ( K `  { A } ) ) )
6529, 63, 64sylanbrc 675 . 2  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  -> 
( x  e.  ( 0..^ ( O `  A ) )  |->  ( x  .x.  A ) ) : ( 0..^ ( O `  A
) ) -onto-> ( K `
 { A }
) )
66 df-f1 5610 . . . 4  |-  ( ( x  e.  ( 0..^ ( O `  A
) )  |->  ( x 
.x.  A ) ) : ( 0..^ ( O `  A ) ) -1-1-> X  <->  ( ( x  e.  ( 0..^ ( O `  A ) )  |->  ( x  .x.  A ) ) : ( 0..^ ( O `
 A ) ) --> X  /\  Fun  `' ( x  e.  (
0..^ ( O `  A ) )  |->  ( x  .x.  A ) ) ) )
6766simprbi 470 . . 3  |-  ( ( x  e.  ( 0..^ ( O `  A
) )  |->  ( x 
.x.  A ) ) : ( 0..^ ( O `  A ) ) -1-1-> X  ->  Fun  `' ( x  e.  (
0..^ ( O `  A ) )  |->  ( x  .x.  A ) ) )
6827, 67syl 17 . 2  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  ->  Fun  `' ( x  e.  ( 0..^ ( O `
 A ) ) 
|->  ( x  .x.  A
) ) )
69 dff1o3 5847 . 2  |-  ( ( x  e.  ( 0..^ ( O `  A
) )  |->  ( x 
.x.  A ) ) : ( 0..^ ( O `  A ) ) -1-1-onto-> ( K `  { A } )  <->  ( (
x  e.  ( 0..^ ( O `  A
) )  |->  ( x 
.x.  A ) ) : ( 0..^ ( O `  A ) ) -onto-> ( K `  { A } )  /\  Fun  `' ( x  e.  ( 0..^ ( O `
 A ) ) 
|->  ( x  .x.  A
) ) ) )
7065, 68, 69sylanbrc 675 1  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  -> 
( x  e.  ( 0..^ ( O `  A ) )  |->  ( x  .x.  A ) ) : ( 0..^ ( O `  A
) ) -1-1-onto-> ( K `  { A } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 375    /\ w3a 991    = wceq 1455    e. wcel 1898   E.wrex 2750   _Vcvv 3057    C_ wss 3416   {csn 3980   class class class wbr 4418    |-> cmpt 4477   `'ccnv 4855   ran crn 4857    |` cres 4858   Fun wfun 5599    Fn wfn 5600   -->wf 5601   -1-1->wf1 5602   -onto->wfo 5603   -1-1-onto->wf1o 5604   ` cfv 5605  (class class class)co 6320   0cc0 9570    - cmin 9891   NNcn 10642   ZZcz 10971  ..^cfzo 11952    mod cmo 12134    || cdvds 14360   Basecbs 15176   0gc0g 15393  mrClscmrc 15544   Grpcgrp 16724  .gcmg 16727  SubGrpcsubg 16866   odcod 17220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-rep 4531  ax-sep 4541  ax-nul 4550  ax-pow 4598  ax-pr 4656  ax-un 6615  ax-inf2 8177  ax-cnex 9626  ax-resscn 9627  ax-1cn 9628  ax-icn 9629  ax-addcl 9630  ax-addrcl 9631  ax-mulcl 9632  ax-mulrcl 9633  ax-mulcom 9634  ax-addass 9635  ax-mulass 9636  ax-distr 9637  ax-i2m1 9638  ax-1ne0 9639  ax-1rid 9640  ax-rnegex 9641  ax-rrecex 9642  ax-cnre 9643  ax-pre-lttri 9644  ax-pre-lttrn 9645  ax-pre-ltadd 9646  ax-pre-mulgt0 9647  ax-pre-sup 9648
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-3an 993  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-nel 2636  df-ral 2754  df-rex 2755  df-reu 2756  df-rmo 2757  df-rab 2758  df-v 3059  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3744  df-if 3894  df-pw 3965  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4213  df-int 4249  df-iun 4294  df-iin 4295  df-br 4419  df-opab 4478  df-mpt 4479  df-tr 4514  df-eprel 4767  df-id 4771  df-po 4777  df-so 4778  df-fr 4815  df-we 4817  df-xp 4862  df-rel 4863  df-cnv 4864  df-co 4865  df-dm 4866  df-rn 4867  df-res 4868  df-ima 4869  df-pred 5403  df-ord 5449  df-on 5450  df-lim 5451  df-suc 5452  df-iota 5569  df-fun 5607  df-fn 5608  df-f 5609  df-f1 5610  df-fo 5611  df-f1o 5612  df-fv 5613  df-riota 6282  df-ov 6323  df-oprab 6324  df-mpt2 6325  df-om 6725  df-1st 6825  df-2nd 6826  df-wrecs 7059  df-recs 7121  df-rdg 7159  df-1o 7213  df-oadd 7217  df-er 7394  df-en 7601  df-dom 7602  df-sdom 7603  df-fin 7604  df-sup 7987  df-inf 7988  df-pnf 9708  df-mnf 9709  df-xr 9710  df-ltxr 9711  df-le 9712  df-sub 9893  df-neg 9894  df-div 10303  df-nn 10643  df-2 10701  df-3 10702  df-n0 10904  df-z 10972  df-uz 11194  df-rp 11337  df-fz 11820  df-fzo 11953  df-fl 12066  df-mod 12135  df-seq 12252  df-exp 12311  df-cj 13217  df-re 13218  df-im 13219  df-sqrt 13353  df-abs 13354  df-dvds 14361  df-ndx 15179  df-slot 15180  df-base 15181  df-sets 15182  df-ress 15183  df-plusg 15258  df-0g 15395  df-mre 15547  df-mrc 15548  df-acs 15550  df-mgm 16543  df-sgrp 16582  df-mnd 16592  df-submnd 16638  df-grp 16728  df-minusg 16729  df-sbg 16730  df-mulg 16731  df-subg 16869  df-od 17227
This theorem is referenced by:  odhash2  17279  odngen  17281
  Copyright terms: Public domain W3C validator