MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odf1o2 Structured version   Unicode version

Theorem odf1o2 16052
Description: An element with nonzero order has as many multiples as its order. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Hypotheses
Ref Expression
odf1o1.x  |-  X  =  ( Base `  G
)
odf1o1.t  |-  .x.  =  (.g
`  G )
odf1o1.o  |-  O  =  ( od `  G
)
odf1o1.k  |-  K  =  (mrCls `  (SubGrp `  G
) )
Assertion
Ref Expression
odf1o2  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  -> 
( x  e.  ( 0..^ ( O `  A ) )  |->  ( x  .x.  A ) ) : ( 0..^ ( O `  A
) ) -1-1-onto-> ( K `  { A } ) )
Distinct variable groups:    x, A    x, G    x, K    x, O    x,  .x.    x, X

Proof of Theorem odf1o2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 simpl1 984 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  /\  x  e.  ( 0..^ ( O `  A
) ) )  ->  G  e.  Grp )
2 elfzoelz 11537 . . . . . . . 8  |-  ( x  e.  ( 0..^ ( O `  A ) )  ->  x  e.  ZZ )
32adantl 463 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  /\  x  e.  ( 0..^ ( O `  A
) ) )  ->  x  e.  ZZ )
4 simpl2 985 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  /\  x  e.  ( 0..^ ( O `  A
) ) )  ->  A  e.  X )
5 odf1o1.x . . . . . . . 8  |-  X  =  ( Base `  G
)
6 odf1o1.t . . . . . . . 8  |-  .x.  =  (.g
`  G )
75, 6mulgcl 15624 . . . . . . 7  |-  ( ( G  e.  Grp  /\  x  e.  ZZ  /\  A  e.  X )  ->  (
x  .x.  A )  e.  X )
81, 3, 4, 7syl3anc 1211 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  /\  x  e.  ( 0..^ ( O `  A
) ) )  -> 
( x  .x.  A
)  e.  X )
98ex 434 . . . . 5  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  -> 
( x  e.  ( 0..^ ( O `  A ) )  -> 
( x  .x.  A
)  e.  X ) )
10 simpl3 986 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  /\  ( x  e.  (
0..^ ( O `  A ) )  /\  y  e.  ( 0..^ ( O `  A
) ) ) )  ->  ( O `  A )  e.  NN )
1110nncnd 10326 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  /\  ( x  e.  (
0..^ ( O `  A ) )  /\  y  e.  ( 0..^ ( O `  A
) ) ) )  ->  ( O `  A )  e.  CC )
1211subid1d 9696 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  /\  ( x  e.  (
0..^ ( O `  A ) )  /\  y  e.  ( 0..^ ( O `  A
) ) ) )  ->  ( ( O `
 A )  - 
0 )  =  ( O `  A ) )
1312breq1d 4290 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  /\  ( x  e.  (
0..^ ( O `  A ) )  /\  y  e.  ( 0..^ ( O `  A
) ) ) )  ->  ( ( ( O `  A )  -  0 )  ||  ( x  -  y
)  <->  ( O `  A )  ||  (
x  -  y ) ) )
14 fzocongeq 13570 . . . . . . . 8  |-  ( ( x  e.  ( 0..^ ( O `  A
) )  /\  y  e.  ( 0..^ ( O `
 A ) ) )  ->  ( (
( O `  A
)  -  0 ) 
||  ( x  -  y )  <->  x  =  y ) )
1514adantl 463 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  /\  ( x  e.  (
0..^ ( O `  A ) )  /\  y  e.  ( 0..^ ( O `  A
) ) ) )  ->  ( ( ( O `  A )  -  0 )  ||  ( x  -  y
)  <->  x  =  y
) )
16 simpl1 984 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  /\  ( x  e.  (
0..^ ( O `  A ) )  /\  y  e.  ( 0..^ ( O `  A
) ) ) )  ->  G  e.  Grp )
17 simpl2 985 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  /\  ( x  e.  (
0..^ ( O `  A ) )  /\  y  e.  ( 0..^ ( O `  A
) ) ) )  ->  A  e.  X
)
182ad2antrl 720 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  /\  ( x  e.  (
0..^ ( O `  A ) )  /\  y  e.  ( 0..^ ( O `  A
) ) ) )  ->  x  e.  ZZ )
19 elfzoelz 11537 . . . . . . . . 9  |-  ( y  e.  ( 0..^ ( O `  A ) )  ->  y  e.  ZZ )
2019ad2antll 721 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  /\  ( x  e.  (
0..^ ( O `  A ) )  /\  y  e.  ( 0..^ ( O `  A
) ) ) )  ->  y  e.  ZZ )
21 odf1o1.o . . . . . . . . 9  |-  O  =  ( od `  G
)
22 eqid 2433 . . . . . . . . 9  |-  ( 0g
`  G )  =  ( 0g `  G
)
235, 21, 6, 22odcong 16032 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( ( O `  A )  ||  ( x  -  y
)  <->  ( x  .x.  A )  =  ( y  .x.  A ) ) )
2416, 17, 18, 20, 23syl112anc 1215 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  /\  ( x  e.  (
0..^ ( O `  A ) )  /\  y  e.  ( 0..^ ( O `  A
) ) ) )  ->  ( ( O `
 A )  ||  ( x  -  y
)  <->  ( x  .x.  A )  =  ( y  .x.  A ) ) )
2513, 15, 243bitr3rd 284 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  /\  ( x  e.  (
0..^ ( O `  A ) )  /\  y  e.  ( 0..^ ( O `  A
) ) ) )  ->  ( ( x 
.x.  A )  =  ( y  .x.  A
)  <->  x  =  y
) )
2625ex 434 . . . . 5  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  -> 
( ( x  e.  ( 0..^ ( O `
 A ) )  /\  y  e.  ( 0..^ ( O `  A ) ) )  ->  ( ( x 
.x.  A )  =  ( y  .x.  A
)  <->  x  =  y
) ) )
279, 26dom2lem 7337 . . . 4  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  -> 
( x  e.  ( 0..^ ( O `  A ) )  |->  ( x  .x.  A ) ) : ( 0..^ ( O `  A
) ) -1-1-> X )
28 f1fn 5595 . . . 4  |-  ( ( x  e.  ( 0..^ ( O `  A
) )  |->  ( x 
.x.  A ) ) : ( 0..^ ( O `  A ) ) -1-1-> X  ->  ( x  e.  ( 0..^ ( O `  A ) )  |->  ( x  .x.  A ) )  Fn  ( 0..^ ( O `
 A ) ) )
2927, 28syl 16 . . 3  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  -> 
( x  e.  ( 0..^ ( O `  A ) )  |->  ( x  .x.  A ) )  Fn  ( 0..^ ( O `  A
) ) )
30 resss 5122 . . . . . . 7  |-  ( ( x  e.  ZZ  |->  ( x  .x.  A ) )  |`  ( 0..^ ( O `  A
) ) )  C_  ( x  e.  ZZ  |->  ( x  .x.  A ) )
312ssriv 3348 . . . . . . . 8  |-  ( 0..^ ( O `  A
) )  C_  ZZ
32 resmpt 5144 . . . . . . . 8  |-  ( ( 0..^ ( O `  A ) )  C_  ZZ  ->  ( ( x  e.  ZZ  |->  ( x 
.x.  A ) )  |`  ( 0..^ ( O `
 A ) ) )  =  ( x  e.  ( 0..^ ( O `  A ) )  |->  ( x  .x.  A ) ) )
3331, 32ax-mp 5 . . . . . . 7  |-  ( ( x  e.  ZZ  |->  ( x  .x.  A ) )  |`  ( 0..^ ( O `  A
) ) )  =  ( x  e.  ( 0..^ ( O `  A ) )  |->  ( x  .x.  A ) )
34 oveq1 6087 . . . . . . . 8  |-  ( x  =  y  ->  (
x  .x.  A )  =  ( y  .x.  A ) )
3534cbvmptv 4371 . . . . . . 7  |-  ( x  e.  ZZ  |->  ( x 
.x.  A ) )  =  ( y  e.  ZZ  |->  ( y  .x.  A ) )
3630, 33, 353sstr3i 3382 . . . . . 6  |-  ( x  e.  ( 0..^ ( O `  A ) )  |->  ( x  .x.  A ) )  C_  ( y  e.  ZZ  |->  ( y  .x.  A
) )
37 rnss 5055 . . . . . 6  |-  ( ( x  e.  ( 0..^ ( O `  A
) )  |->  ( x 
.x.  A ) ) 
C_  ( y  e.  ZZ  |->  ( y  .x.  A ) )  ->  ran  ( x  e.  ( 0..^ ( O `  A ) )  |->  ( x  .x.  A ) )  C_  ran  ( y  e.  ZZ  |->  ( y 
.x.  A ) ) )
3836, 37mp1i 12 . . . . 5  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  ->  ran  ( x  e.  ( 0..^ ( O `  A ) )  |->  ( x  .x.  A ) )  C_  ran  ( y  e.  ZZ  |->  ( y 
.x.  A ) ) )
39 simpr 458 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  /\  y  e.  ZZ )  ->  y  e.  ZZ )
40 simpl3 986 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  /\  y  e.  ZZ )  ->  ( O `  A
)  e.  NN )
41 zmodfzo 11714 . . . . . . . . . 10  |-  ( ( y  e.  ZZ  /\  ( O `  A )  e.  NN )  -> 
( y  mod  ( O `  A )
)  e.  ( 0..^ ( O `  A
) ) )
4239, 40, 41syl2anc 654 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  /\  y  e.  ZZ )  ->  ( y  mod  ( O `  A )
)  e.  ( 0..^ ( O `  A
) ) )
435, 21, 6, 22odmod 16029 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  y  e.  ZZ )  /\  ( O `  A
)  e.  NN )  ->  ( ( y  mod  ( O `  A ) )  .x.  A )  =  ( y  .x.  A ) )
44433an1rs 1192 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  /\  y  e.  ZZ )  ->  ( ( y  mod  ( O `  A
) )  .x.  A
)  =  ( y 
.x.  A ) )
4544eqcomd 2438 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  /\  y  e.  ZZ )  ->  ( y  .x.  A
)  =  ( ( y  mod  ( O `
 A ) ) 
.x.  A ) )
46 oveq1 6087 . . . . . . . . . . 11  |-  ( x  =  ( y  mod  ( O `  A
) )  ->  (
x  .x.  A )  =  ( ( y  mod  ( O `  A ) )  .x.  A ) )
4746eqeq2d 2444 . . . . . . . . . 10  |-  ( x  =  ( y  mod  ( O `  A
) )  ->  (
( y  .x.  A
)  =  ( x 
.x.  A )  <->  ( y  .x.  A )  =  ( ( y  mod  ( O `  A )
)  .x.  A )
) )
4847rspcev 3062 . . . . . . . . 9  |-  ( ( ( y  mod  ( O `  A )
)  e.  ( 0..^ ( O `  A
) )  /\  (
y  .x.  A )  =  ( ( y  mod  ( O `  A ) )  .x.  A ) )  ->  E. x  e.  (
0..^ ( O `  A ) ) ( y  .x.  A )  =  ( x  .x.  A ) )
4942, 45, 48syl2anc 654 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  /\  y  e.  ZZ )  ->  E. x  e.  ( 0..^ ( O `  A ) ) ( y  .x.  A )  =  ( x  .x.  A ) )
50 ovex 6105 . . . . . . . . 9  |-  ( y 
.x.  A )  e. 
_V
51 eqid 2433 . . . . . . . . . 10  |-  ( x  e.  ( 0..^ ( O `  A ) )  |->  ( x  .x.  A ) )  =  ( x  e.  ( 0..^ ( O `  A ) )  |->  ( x  .x.  A ) )
5251elrnmpt 5073 . . . . . . . . 9  |-  ( ( y  .x.  A )  e.  _V  ->  (
( y  .x.  A
)  e.  ran  (
x  e.  ( 0..^ ( O `  A
) )  |->  ( x 
.x.  A ) )  <->  E. x  e.  (
0..^ ( O `  A ) ) ( y  .x.  A )  =  ( x  .x.  A ) ) )
5350, 52ax-mp 5 . . . . . . . 8  |-  ( ( y  .x.  A )  e.  ran  ( x  e.  ( 0..^ ( O `  A ) )  |->  ( x  .x.  A ) )  <->  E. x  e.  ( 0..^ ( O `
 A ) ) ( y  .x.  A
)  =  ( x 
.x.  A ) )
5449, 53sylibr 212 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  /\  y  e.  ZZ )  ->  ( y  .x.  A
)  e.  ran  (
x  e.  ( 0..^ ( O `  A
) )  |->  ( x 
.x.  A ) ) )
55 eqid 2433 . . . . . . 7  |-  ( y  e.  ZZ  |->  ( y 
.x.  A ) )  =  ( y  e.  ZZ  |->  ( y  .x.  A ) )
5654, 55fmptd 5855 . . . . . 6  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  -> 
( y  e.  ZZ  |->  ( y  .x.  A
) ) : ZZ --> ran  ( x  e.  ( 0..^ ( O `  A ) )  |->  ( x  .x.  A ) ) )
57 frn 5553 . . . . . 6  |-  ( ( y  e.  ZZ  |->  ( y  .x.  A ) ) : ZZ --> ran  (
x  e.  ( 0..^ ( O `  A
) )  |->  ( x 
.x.  A ) )  ->  ran  ( y  e.  ZZ  |->  ( y  .x.  A ) )  C_  ran  ( x  e.  ( 0..^ ( O `  A ) )  |->  ( x  .x.  A ) ) )
5856, 57syl 16 . . . . 5  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  ->  ran  ( y  e.  ZZ  |->  ( y  .x.  A
) )  C_  ran  ( x  e.  (
0..^ ( O `  A ) )  |->  ( x  .x.  A ) ) )
5938, 58eqssd 3361 . . . 4  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  ->  ran  ( x  e.  ( 0..^ ( O `  A ) )  |->  ( x  .x.  A ) )  =  ran  (
y  e.  ZZ  |->  ( y  .x.  A ) ) )
60 odf1o1.k . . . . . 6  |-  K  =  (mrCls `  (SubGrp `  G
) )
615, 6, 55, 60cycsubg2 15698 . . . . 5  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( K `  { A } )  =  ran  ( y  e.  ZZ  |->  ( y  .x.  A
) ) )
62613adant3 1001 . . . 4  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  -> 
( K `  { A } )  =  ran  ( y  e.  ZZ  |->  ( y  .x.  A
) ) )
6359, 62eqtr4d 2468 . . 3  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  ->  ran  ( x  e.  ( 0..^ ( O `  A ) )  |->  ( x  .x.  A ) )  =  ( K `
 { A }
) )
64 df-fo 5412 . . 3  |-  ( ( x  e.  ( 0..^ ( O `  A
) )  |->  ( x 
.x.  A ) ) : ( 0..^ ( O `  A ) ) -onto-> ( K `  { A } )  <->  ( (
x  e.  ( 0..^ ( O `  A
) )  |->  ( x 
.x.  A ) )  Fn  ( 0..^ ( O `  A ) )  /\  ran  (
x  e.  ( 0..^ ( O `  A
) )  |->  ( x 
.x.  A ) )  =  ( K `  { A } ) ) )
6529, 63, 64sylanbrc 657 . 2  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  -> 
( x  e.  ( 0..^ ( O `  A ) )  |->  ( x  .x.  A ) ) : ( 0..^ ( O `  A
) ) -onto-> ( K `
 { A }
) )
66 df-f1 5411 . . . 4  |-  ( ( x  e.  ( 0..^ ( O `  A
) )  |->  ( x 
.x.  A ) ) : ( 0..^ ( O `  A ) ) -1-1-> X  <->  ( ( x  e.  ( 0..^ ( O `  A ) )  |->  ( x  .x.  A ) ) : ( 0..^ ( O `
 A ) ) --> X  /\  Fun  `' ( x  e.  (
0..^ ( O `  A ) )  |->  ( x  .x.  A ) ) ) )
6766simprbi 461 . . 3  |-  ( ( x  e.  ( 0..^ ( O `  A
) )  |->  ( x 
.x.  A ) ) : ( 0..^ ( O `  A ) ) -1-1-> X  ->  Fun  `' ( x  e.  (
0..^ ( O `  A ) )  |->  ( x  .x.  A ) ) )
6827, 67syl 16 . 2  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  ->  Fun  `' ( x  e.  ( 0..^ ( O `
 A ) ) 
|->  ( x  .x.  A
) ) )
69 dff1o3 5635 . 2  |-  ( ( x  e.  ( 0..^ ( O `  A
) )  |->  ( x 
.x.  A ) ) : ( 0..^ ( O `  A ) ) -1-1-onto-> ( K `  { A } )  <->  ( (
x  e.  ( 0..^ ( O `  A
) )  |->  ( x 
.x.  A ) ) : ( 0..^ ( O `  A ) ) -onto-> ( K `  { A } )  /\  Fun  `' ( x  e.  ( 0..^ ( O `
 A ) ) 
|->  ( x  .x.  A
) ) ) )
7065, 68, 69sylanbrc 657 1  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  -> 
( x  e.  ( 0..^ ( O `  A ) )  |->  ( x  .x.  A ) ) : ( 0..^ ( O `  A
) ) -1-1-onto-> ( K `  { A } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 958    = wceq 1362    e. wcel 1755   E.wrex 2706   _Vcvv 2962    C_ wss 3316   {csn 3865   class class class wbr 4280    e. cmpt 4338   `'ccnv 4826   ran crn 4828    |` cres 4829   Fun wfun 5400    Fn wfn 5401   -->wf 5402   -1-1->wf1 5403   -onto->wfo 5404   -1-1-onto->wf1o 5405   ` cfv 5406  (class class class)co 6080   0cc0 9270    - cmin 9583   NNcn 10310   ZZcz 10634  ..^cfzo 11532    mod cmo 11692    || cdivides 13518   Basecbs 14157   0gc0g 14361  mrClscmrc 14504   Grpcgrp 15393  .gcmg 15397  SubGrpcsubg 15655   odcod 16008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-inf2 7835  ax-cnex 9326  ax-resscn 9327  ax-1cn 9328  ax-icn 9329  ax-addcl 9330  ax-addrcl 9331  ax-mulcl 9332  ax-mulrcl 9333  ax-mulcom 9334  ax-addass 9335  ax-mulass 9336  ax-distr 9337  ax-i2m1 9338  ax-1ne0 9339  ax-1rid 9340  ax-rnegex 9341  ax-rrecex 9342  ax-cnre 9343  ax-pre-lttri 9344  ax-pre-lttrn 9345  ax-pre-ltadd 9346  ax-pre-mulgt0 9347  ax-pre-sup 9348
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-iin 4162  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-om 6466  df-1st 6566  df-2nd 6567  df-recs 6818  df-rdg 6852  df-1o 6908  df-oadd 6912  df-er 7089  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-sup 7679  df-pnf 9408  df-mnf 9409  df-xr 9410  df-ltxr 9411  df-le 9412  df-sub 9585  df-neg 9586  df-div 9982  df-nn 10311  df-2 10368  df-3 10369  df-n0 10568  df-z 10635  df-uz 10850  df-rp 10980  df-fz 11425  df-fzo 11533  df-fl 11626  df-mod 11693  df-seq 11791  df-exp 11850  df-cj 12572  df-re 12573  df-im 12574  df-sqr 12708  df-abs 12709  df-dvds 13519  df-ndx 14160  df-slot 14161  df-base 14162  df-sets 14163  df-ress 14164  df-plusg 14234  df-0g 14363  df-mre 14507  df-mrc 14508  df-acs 14510  df-mnd 15398  df-submnd 15448  df-grp 15525  df-minusg 15526  df-sbg 15527  df-mulg 15528  df-subg 15658  df-od 16012
This theorem is referenced by:  odhash2  16054  odngen  16056
  Copyright terms: Public domain W3C validator