MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odf1 Structured version   Unicode version

Theorem odf1 16043
Description: The multiples of an element with infinite order form an infinite cyclic subgroup of  G. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Mario Carneiro, 23-Sep-2015.)
Hypotheses
Ref Expression
odf1.1  |-  X  =  ( Base `  G
)
odf1.2  |-  O  =  ( od `  G
)
odf1.3  |-  .x.  =  (.g
`  G )
odf1.4  |-  F  =  ( x  e.  ZZ  |->  ( x  .x.  A ) )
Assertion
Ref Expression
odf1  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( ( O `  A )  =  0  <-> 
F : ZZ -1-1-> X
) )
Distinct variable groups:    x, A    x, G    x, O    x,  .x.    x, X
Allowed substitution hint:    F( x)

Proof of Theorem odf1
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 odf1.1 . . . . . . . 8  |-  X  =  ( Base `  G
)
2 odf1.3 . . . . . . . 8  |-  .x.  =  (.g
`  G )
31, 2mulgcl 15624 . . . . . . 7  |-  ( ( G  e.  Grp  /\  x  e.  ZZ  /\  A  e.  X )  ->  (
x  .x.  A )  e.  X )
433expa 1180 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  x  e.  ZZ )  /\  A  e.  X
)  ->  ( x  .x.  A )  e.  X
)
54an32s 795 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  x  e.  ZZ )  ->  ( x  .x.  A )  e.  X
)
6 odf1.4 . . . . 5  |-  F  =  ( x  e.  ZZ  |->  ( x  .x.  A ) )
75, 6fmptd 5855 . . . 4  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  F : ZZ --> X )
87adantr 462 . . 3  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  =  0 )  ->  F : ZZ
--> X )
9 oveq1 6087 . . . . . . . . 9  |-  ( x  =  y  ->  (
x  .x.  A )  =  ( y  .x.  A ) )
10 ovex 6105 . . . . . . . . 9  |-  ( x 
.x.  A )  e. 
_V
119, 6, 10fvmpt3i 5766 . . . . . . . 8  |-  ( y  e.  ZZ  ->  ( F `  y )  =  ( y  .x.  A ) )
12 oveq1 6087 . . . . . . . . 9  |-  ( x  =  z  ->  (
x  .x.  A )  =  ( z  .x.  A ) )
1312, 6, 10fvmpt3i 5766 . . . . . . . 8  |-  ( z  e.  ZZ  ->  ( F `  z )  =  ( z  .x.  A ) )
1411, 13eqeqan12d 2448 . . . . . . 7  |-  ( ( y  e.  ZZ  /\  z  e.  ZZ )  ->  ( ( F `  y )  =  ( F `  z )  <-> 
( y  .x.  A
)  =  ( z 
.x.  A ) ) )
1514adantl 463 . . . . . 6  |-  ( ( ( ( G  e. 
Grp  /\  A  e.  X )  /\  ( O `  A )  =  0 )  /\  ( y  e.  ZZ  /\  z  e.  ZZ ) )  ->  ( ( F `  y )  =  ( F `  z )  <->  ( y  .x.  A )  =  ( z  .x.  A ) ) )
16 simplr 747 . . . . . . . 8  |-  ( ( ( ( G  e. 
Grp  /\  A  e.  X )  /\  ( O `  A )  =  0 )  /\  ( y  e.  ZZ  /\  z  e.  ZZ ) )  ->  ( O `  A )  =  0 )
1716breq1d 4290 . . . . . . 7  |-  ( ( ( ( G  e. 
Grp  /\  A  e.  X )  /\  ( O `  A )  =  0 )  /\  ( y  e.  ZZ  /\  z  e.  ZZ ) )  ->  ( ( O `  A )  ||  ( y  -  z
)  <->  0  ||  (
y  -  z ) ) )
18 odf1.2 . . . . . . . . . 10  |-  O  =  ( od `  G
)
19 eqid 2433 . . . . . . . . . 10  |-  ( 0g
`  G )  =  ( 0g `  G
)
201, 18, 2, 19odcong 16032 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( y  e.  ZZ  /\  z  e.  ZZ ) )  ->  ( ( O `  A )  ||  ( y  -  z
)  <->  ( y  .x.  A )  =  ( z  .x.  A ) ) )
21203expa 1180 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( y  e.  ZZ  /\  z  e.  ZZ ) )  -> 
( ( O `  A )  ||  (
y  -  z )  <-> 
( y  .x.  A
)  =  ( z 
.x.  A ) ) )
2221adantlr 707 . . . . . . 7  |-  ( ( ( ( G  e. 
Grp  /\  A  e.  X )  /\  ( O `  A )  =  0 )  /\  ( y  e.  ZZ  /\  z  e.  ZZ ) )  ->  ( ( O `  A )  ||  ( y  -  z
)  <->  ( y  .x.  A )  =  ( z  .x.  A ) ) )
23 zsubcl 10675 . . . . . . . . 9  |-  ( ( y  e.  ZZ  /\  z  e.  ZZ )  ->  ( y  -  z
)  e.  ZZ )
2423adantl 463 . . . . . . . 8  |-  ( ( ( ( G  e. 
Grp  /\  A  e.  X )  /\  ( O `  A )  =  0 )  /\  ( y  e.  ZZ  /\  z  e.  ZZ ) )  ->  ( y  -  z )  e.  ZZ )
25 0dvds 13536 . . . . . . . 8  |-  ( ( y  -  z )  e.  ZZ  ->  (
0  ||  ( y  -  z )  <->  ( y  -  z )  =  0 ) )
2624, 25syl 16 . . . . . . 7  |-  ( ( ( ( G  e. 
Grp  /\  A  e.  X )  /\  ( O `  A )  =  0 )  /\  ( y  e.  ZZ  /\  z  e.  ZZ ) )  ->  ( 0 
||  ( y  -  z )  <->  ( y  -  z )  =  0 ) )
2717, 22, 263bitr3d 283 . . . . . 6  |-  ( ( ( ( G  e. 
Grp  /\  A  e.  X )  /\  ( O `  A )  =  0 )  /\  ( y  e.  ZZ  /\  z  e.  ZZ ) )  ->  ( (
y  .x.  A )  =  ( z  .x.  A )  <->  ( y  -  z )  =  0 ) )
28 zcn 10639 . . . . . . . 8  |-  ( y  e.  ZZ  ->  y  e.  CC )
29 zcn 10639 . . . . . . . 8  |-  ( z  e.  ZZ  ->  z  e.  CC )
30 subeq0 9623 . . . . . . . 8  |-  ( ( y  e.  CC  /\  z  e.  CC )  ->  ( ( y  -  z )  =  0  <-> 
y  =  z ) )
3128, 29, 30syl2an 474 . . . . . . 7  |-  ( ( y  e.  ZZ  /\  z  e.  ZZ )  ->  ( ( y  -  z )  =  0  <-> 
y  =  z ) )
3231adantl 463 . . . . . 6  |-  ( ( ( ( G  e. 
Grp  /\  A  e.  X )  /\  ( O `  A )  =  0 )  /\  ( y  e.  ZZ  /\  z  e.  ZZ ) )  ->  ( (
y  -  z )  =  0  <->  y  =  z ) )
3315, 27, 323bitrd 279 . . . . 5  |-  ( ( ( ( G  e. 
Grp  /\  A  e.  X )  /\  ( O `  A )  =  0 )  /\  ( y  e.  ZZ  /\  z  e.  ZZ ) )  ->  ( ( F `  y )  =  ( F `  z )  <->  y  =  z ) )
3433biimpd 207 . . . 4  |-  ( ( ( ( G  e. 
Grp  /\  A  e.  X )  /\  ( O `  A )  =  0 )  /\  ( y  e.  ZZ  /\  z  e.  ZZ ) )  ->  ( ( F `  y )  =  ( F `  z )  ->  y  =  z ) )
3534ralrimivva 2798 . . 3  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  =  0 )  ->  A. y  e.  ZZ  A. z  e.  ZZ  ( ( F `
 y )  =  ( F `  z
)  ->  y  =  z ) )
36 dff13 5958 . . 3  |-  ( F : ZZ -1-1-> X  <->  ( F : ZZ --> X  /\  A. y  e.  ZZ  A. z  e.  ZZ  ( ( F `
 y )  =  ( F `  z
)  ->  y  =  z ) ) )
378, 35, 36sylanbrc 657 . 2  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  =  0 )  ->  F : ZZ
-1-1-> X )
381, 18, 2, 19odid 16021 . . . . . 6  |-  ( A  e.  X  ->  (
( O `  A
)  .x.  A )  =  ( 0g `  G ) )
391, 19, 2mulg0 15612 . . . . . 6  |-  ( A  e.  X  ->  (
0  .x.  A )  =  ( 0g `  G ) )
4038, 39eqtr4d 2468 . . . . 5  |-  ( A  e.  X  ->  (
( O `  A
)  .x.  A )  =  ( 0  .x. 
A ) )
4140ad2antlr 719 . . . 4  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  F : ZZ -1-1-> X )  ->  ( ( O `  A )  .x.  A )  =  ( 0  .x.  A ) )
421, 18odcl 16019 . . . . . . 7  |-  ( A  e.  X  ->  ( O `  A )  e.  NN0 )
4342ad2antlr 719 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  F : ZZ -1-1-> X )  ->  ( O `  A )  e.  NN0 )
4443nn0zd 10733 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  F : ZZ -1-1-> X )  ->  ( O `  A )  e.  ZZ )
45 oveq1 6087 . . . . . 6  |-  ( x  =  ( O `  A )  ->  (
x  .x.  A )  =  ( ( O `
 A )  .x.  A ) )
4645, 6, 10fvmpt3i 5766 . . . . 5  |-  ( ( O `  A )  e.  ZZ  ->  ( F `  ( O `  A ) )  =  ( ( O `  A )  .x.  A
) )
4744, 46syl 16 . . . 4  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  F : ZZ -1-1-> X )  ->  ( F `  ( O `  A
) )  =  ( ( O `  A
)  .x.  A )
)
48 0zd 10646 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  F : ZZ -1-1-> X )  ->  0  e.  ZZ )
49 oveq1 6087 . . . . . 6  |-  ( x  =  0  ->  (
x  .x.  A )  =  ( 0  .x. 
A ) )
5049, 6, 10fvmpt3i 5766 . . . . 5  |-  ( 0  e.  ZZ  ->  ( F `  0 )  =  ( 0  .x. 
A ) )
5148, 50syl 16 . . . 4  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  F : ZZ -1-1-> X )  ->  ( F `  0 )  =  ( 0  .x.  A
) )
5241, 47, 513eqtr4d 2475 . . 3  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  F : ZZ -1-1-> X )  ->  ( F `  ( O `  A
) )  =  ( F `  0 ) )
53 simpr 458 . . . 4  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  F : ZZ -1-1-> X )  ->  F : ZZ
-1-1-> X )
54 f1fveq 5962 . . . 4  |-  ( ( F : ZZ -1-1-> X  /\  ( ( O `  A )  e.  ZZ  /\  0  e.  ZZ ) )  ->  ( ( F `  ( O `  A ) )  =  ( F `  0
)  <->  ( O `  A )  =  0 ) )
5553, 44, 48, 54syl12anc 1209 . . 3  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  F : ZZ -1-1-> X )  ->  ( ( F `  ( O `  A ) )  =  ( F `  0
)  <->  ( O `  A )  =  0 ) )
5652, 55mpbid 210 . 2  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  F : ZZ -1-1-> X )  ->  ( O `  A )  =  0 )
5737, 56impbida 821 1  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( ( O `  A )  =  0  <-> 
F : ZZ -1-1-> X
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1362    e. wcel 1755   A.wral 2705   class class class wbr 4280    e. cmpt 4338   -->wf 5402   -1-1->wf1 5403   ` cfv 5406  (class class class)co 6080   CCcc 9268   0cc0 9270    - cmin 9583   NN0cn0 10567   ZZcz 10634    || cdivides 13518   Basecbs 14157   0gc0g 14361   Grpcgrp 15393  .gcmg 15397   odcod 16008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-inf2 7835  ax-cnex 9326  ax-resscn 9327  ax-1cn 9328  ax-icn 9329  ax-addcl 9330  ax-addrcl 9331  ax-mulcl 9332  ax-mulrcl 9333  ax-mulcom 9334  ax-addass 9335  ax-mulass 9336  ax-distr 9337  ax-i2m1 9338  ax-1ne0 9339  ax-1rid 9340  ax-rnegex 9341  ax-rrecex 9342  ax-cnre 9343  ax-pre-lttri 9344  ax-pre-lttrn 9345  ax-pre-ltadd 9346  ax-pre-mulgt0 9347  ax-pre-sup 9348
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-om 6466  df-1st 6566  df-2nd 6567  df-recs 6818  df-rdg 6852  df-er 7089  df-en 7299  df-dom 7300  df-sdom 7301  df-sup 7679  df-pnf 9408  df-mnf 9409  df-xr 9410  df-ltxr 9411  df-le 9412  df-sub 9585  df-neg 9586  df-div 9982  df-nn 10311  df-2 10368  df-3 10369  df-n0 10568  df-z 10635  df-uz 10850  df-rp 10980  df-fz 11425  df-fl 11626  df-mod 11693  df-seq 11791  df-exp 11850  df-cj 12572  df-re 12573  df-im 12574  df-sqr 12708  df-abs 12709  df-dvds 13519  df-0g 14363  df-mnd 15398  df-grp 15525  df-minusg 15526  df-sbg 15527  df-mulg 15528  df-od 16012
This theorem is referenced by:  odinf  16044  odcl2  16046  zrhchr  26259
  Copyright terms: Public domain W3C validator