MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oddvdssubg Structured version   Unicode version

Theorem oddvdssubg 17063
Description: The set of all elements whose order divides a fixed integer is a subgroup of any abelian group. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
torsubg.1  |-  O  =  ( od `  G
)
oddvdssubg.1  |-  B  =  ( Base `  G
)
Assertion
Ref Expression
oddvdssubg  |-  ( ( G  e.  Abel  /\  N  e.  ZZ )  ->  { x  e.  B  |  ( O `  x )  ||  N }  e.  (SubGrp `  G ) )
Distinct variable groups:    x, B    x, G    x, N    x, O

Proof of Theorem oddvdssubg
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3571 . . 3  |-  { x  e.  B  |  ( O `  x )  ||  N }  C_  B
21a1i 11 . 2  |-  ( ( G  e.  Abel  /\  N  e.  ZZ )  ->  { x  e.  B  |  ( O `  x )  ||  N }  C_  B
)
3 ablgrp 17005 . . . . . 6  |-  ( G  e.  Abel  ->  G  e. 
Grp )
43adantr 463 . . . . 5  |-  ( ( G  e.  Abel  /\  N  e.  ZZ )  ->  G  e.  Grp )
5 oddvdssubg.1 . . . . . 6  |-  B  =  ( Base `  G
)
6 eqid 2454 . . . . . 6  |-  ( 0g
`  G )  =  ( 0g `  G
)
75, 6grpidcl 16280 . . . . 5  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  B )
84, 7syl 16 . . . 4  |-  ( ( G  e.  Abel  /\  N  e.  ZZ )  ->  ( 0g `  G )  e.  B )
9 torsubg.1 . . . . . . 7  |-  O  =  ( od `  G
)
109, 6od1 16783 . . . . . 6  |-  ( G  e.  Grp  ->  ( O `  ( 0g `  G ) )  =  1 )
114, 10syl 16 . . . . 5  |-  ( ( G  e.  Abel  /\  N  e.  ZZ )  ->  ( O `  ( 0g `  G ) )  =  1 )
12 1dvds 14085 . . . . . 6  |-  ( N  e.  ZZ  ->  1  ||  N )
1312adantl 464 . . . . 5  |-  ( ( G  e.  Abel  /\  N  e.  ZZ )  ->  1  ||  N )
1411, 13eqbrtrd 4459 . . . 4  |-  ( ( G  e.  Abel  /\  N  e.  ZZ )  ->  ( O `  ( 0g `  G ) )  ||  N )
15 fveq2 5848 . . . . . 6  |-  ( x  =  ( 0g `  G )  ->  ( O `  x )  =  ( O `  ( 0g `  G ) ) )
1615breq1d 4449 . . . . 5  |-  ( x  =  ( 0g `  G )  ->  (
( O `  x
)  ||  N  <->  ( O `  ( 0g `  G
) )  ||  N
) )
1716elrab 3254 . . . 4  |-  ( ( 0g `  G )  e.  { x  e.  B  |  ( O `
 x )  ||  N }  <->  ( ( 0g
`  G )  e.  B  /\  ( O `
 ( 0g `  G ) )  ||  N ) )
188, 14, 17sylanbrc 662 . . 3  |-  ( ( G  e.  Abel  /\  N  e.  ZZ )  ->  ( 0g `  G )  e. 
{ x  e.  B  |  ( O `  x )  ||  N } )
19 ne0i 3789 . . 3  |-  ( ( 0g `  G )  e.  { x  e.  B  |  ( O `
 x )  ||  N }  ->  { x  e.  B  |  ( O `  x )  ||  N }  =/=  (/) )
2018, 19syl 16 . 2  |-  ( ( G  e.  Abel  /\  N  e.  ZZ )  ->  { x  e.  B  |  ( O `  x )  ||  N }  =/=  (/) )
21 fveq2 5848 . . . . . 6  |-  ( x  =  y  ->  ( O `  x )  =  ( O `  y ) )
2221breq1d 4449 . . . . 5  |-  ( x  =  y  ->  (
( O `  x
)  ||  N  <->  ( O `  y )  ||  N
) )
2322elrab 3254 . . . 4  |-  ( y  e.  { x  e.  B  |  ( O `
 x )  ||  N }  <->  ( y  e.  B  /\  ( O `
 y )  ||  N ) )
24 fveq2 5848 . . . . . . . . 9  |-  ( x  =  z  ->  ( O `  x )  =  ( O `  z ) )
2524breq1d 4449 . . . . . . . 8  |-  ( x  =  z  ->  (
( O `  x
)  ||  N  <->  ( O `  z )  ||  N
) )
2625elrab 3254 . . . . . . 7  |-  ( z  e.  { x  e.  B  |  ( O `
 x )  ||  N }  <->  ( z  e.  B  /\  ( O `
 z )  ||  N ) )
274adantr 463 . . . . . . . . . 10  |-  ( ( ( G  e.  Abel  /\  N  e.  ZZ )  /\  ( y  e.  B  /\  ( O `
 y )  ||  N ) )  ->  G  e.  Grp )
2827adantr 463 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Abel  /\  N  e.  ZZ )  /\  ( y  e.  B  /\  ( O `
 y )  ||  N ) )  /\  ( z  e.  B  /\  ( O `  z
)  ||  N )
)  ->  G  e.  Grp )
29 simprl 754 . . . . . . . . . 10  |-  ( ( ( G  e.  Abel  /\  N  e.  ZZ )  /\  ( y  e.  B  /\  ( O `
 y )  ||  N ) )  -> 
y  e.  B )
3029adantr 463 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Abel  /\  N  e.  ZZ )  /\  ( y  e.  B  /\  ( O `
 y )  ||  N ) )  /\  ( z  e.  B  /\  ( O `  z
)  ||  N )
)  ->  y  e.  B )
31 simprl 754 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Abel  /\  N  e.  ZZ )  /\  ( y  e.  B  /\  ( O `
 y )  ||  N ) )  /\  ( z  e.  B  /\  ( O `  z
)  ||  N )
)  ->  z  e.  B )
32 eqid 2454 . . . . . . . . . 10  |-  ( +g  `  G )  =  ( +g  `  G )
335, 32grpcl 16265 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  y  e.  B  /\  z  e.  B )  ->  ( y ( +g  `  G ) z )  e.  B )
3428, 30, 31, 33syl3anc 1226 . . . . . . . 8  |-  ( ( ( ( G  e. 
Abel  /\  N  e.  ZZ )  /\  ( y  e.  B  /\  ( O `
 y )  ||  N ) )  /\  ( z  e.  B  /\  ( O `  z
)  ||  N )
)  ->  ( y
( +g  `  G ) z )  e.  B
)
35 simplll 757 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Abel  /\  N  e.  ZZ )  /\  ( y  e.  B  /\  ( O `
 y )  ||  N ) )  /\  ( z  e.  B  /\  ( O `  z
)  ||  N )
)  ->  G  e.  Abel )
36 simpllr 758 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Abel  /\  N  e.  ZZ )  /\  ( y  e.  B  /\  ( O `
 y )  ||  N ) )  /\  ( z  e.  B  /\  ( O `  z
)  ||  N )
)  ->  N  e.  ZZ )
37 eqid 2454 . . . . . . . . . . . 12  |-  (.g `  G
)  =  (.g `  G
)
385, 37, 32mulgdi 17037 . . . . . . . . . . 11  |-  ( ( G  e.  Abel  /\  ( N  e.  ZZ  /\  y  e.  B  /\  z  e.  B ) )  -> 
( N (.g `  G
) ( y ( +g  `  G ) z ) )  =  ( ( N (.g `  G ) y ) ( +g  `  G
) ( N (.g `  G ) z ) ) )
3935, 36, 30, 31, 38syl13anc 1228 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Abel  /\  N  e.  ZZ )  /\  ( y  e.  B  /\  ( O `
 y )  ||  N ) )  /\  ( z  e.  B  /\  ( O `  z
)  ||  N )
)  ->  ( N
(.g `  G ) ( y ( +g  `  G
) z ) )  =  ( ( N (.g `  G ) y ) ( +g  `  G
) ( N (.g `  G ) z ) ) )
40 simprr 755 . . . . . . . . . . . . 13  |-  ( ( ( G  e.  Abel  /\  N  e.  ZZ )  /\  ( y  e.  B  /\  ( O `
 y )  ||  N ) )  -> 
( O `  y
)  ||  N )
4140adantr 463 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
Abel  /\  N  e.  ZZ )  /\  ( y  e.  B  /\  ( O `
 y )  ||  N ) )  /\  ( z  e.  B  /\  ( O `  z
)  ||  N )
)  ->  ( O `  y )  ||  N
)
425, 9, 37, 6oddvds 16773 . . . . . . . . . . . . 13  |-  ( ( G  e.  Grp  /\  y  e.  B  /\  N  e.  ZZ )  ->  ( ( O `  y )  ||  N  <->  ( N (.g `  G ) y )  =  ( 0g
`  G ) ) )
4328, 30, 36, 42syl3anc 1226 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
Abel  /\  N  e.  ZZ )  /\  ( y  e.  B  /\  ( O `
 y )  ||  N ) )  /\  ( z  e.  B  /\  ( O `  z
)  ||  N )
)  ->  ( ( O `  y )  ||  N  <->  ( N (.g `  G ) y )  =  ( 0g `  G ) ) )
4441, 43mpbid 210 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Abel  /\  N  e.  ZZ )  /\  ( y  e.  B  /\  ( O `
 y )  ||  N ) )  /\  ( z  e.  B  /\  ( O `  z
)  ||  N )
)  ->  ( N
(.g `  G ) y )  =  ( 0g
`  G ) )
45 simprr 755 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
Abel  /\  N  e.  ZZ )  /\  ( y  e.  B  /\  ( O `
 y )  ||  N ) )  /\  ( z  e.  B  /\  ( O `  z
)  ||  N )
)  ->  ( O `  z )  ||  N
)
465, 9, 37, 6oddvds 16773 . . . . . . . . . . . . 13  |-  ( ( G  e.  Grp  /\  z  e.  B  /\  N  e.  ZZ )  ->  ( ( O `  z )  ||  N  <->  ( N (.g `  G ) z )  =  ( 0g
`  G ) ) )
4728, 31, 36, 46syl3anc 1226 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
Abel  /\  N  e.  ZZ )  /\  ( y  e.  B  /\  ( O `
 y )  ||  N ) )  /\  ( z  e.  B  /\  ( O `  z
)  ||  N )
)  ->  ( ( O `  z )  ||  N  <->  ( N (.g `  G ) z )  =  ( 0g `  G ) ) )
4845, 47mpbid 210 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Abel  /\  N  e.  ZZ )  /\  ( y  e.  B  /\  ( O `
 y )  ||  N ) )  /\  ( z  e.  B  /\  ( O `  z
)  ||  N )
)  ->  ( N
(.g `  G ) z )  =  ( 0g
`  G ) )
4944, 48oveq12d 6288 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Abel  /\  N  e.  ZZ )  /\  ( y  e.  B  /\  ( O `
 y )  ||  N ) )  /\  ( z  e.  B  /\  ( O `  z
)  ||  N )
)  ->  ( ( N (.g `  G ) y ) ( +g  `  G
) ( N (.g `  G ) z ) )  =  ( ( 0g `  G ) ( +g  `  G
) ( 0g `  G ) ) )
5028, 7syl 16 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Abel  /\  N  e.  ZZ )  /\  ( y  e.  B  /\  ( O `
 y )  ||  N ) )  /\  ( z  e.  B  /\  ( O `  z
)  ||  N )
)  ->  ( 0g `  G )  e.  B
)
515, 32, 6grplid 16282 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( 0g `  G )  e.  B )  -> 
( ( 0g `  G ) ( +g  `  G ) ( 0g
`  G ) )  =  ( 0g `  G ) )
5228, 50, 51syl2anc 659 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Abel  /\  N  e.  ZZ )  /\  ( y  e.  B  /\  ( O `
 y )  ||  N ) )  /\  ( z  e.  B  /\  ( O `  z
)  ||  N )
)  ->  ( ( 0g `  G ) ( +g  `  G ) ( 0g `  G
) )  =  ( 0g `  G ) )
5339, 49, 523eqtrd 2499 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Abel  /\  N  e.  ZZ )  /\  ( y  e.  B  /\  ( O `
 y )  ||  N ) )  /\  ( z  e.  B  /\  ( O `  z
)  ||  N )
)  ->  ( N
(.g `  G ) ( y ( +g  `  G
) z ) )  =  ( 0g `  G ) )
545, 9, 37, 6oddvds 16773 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( y ( +g  `  G ) z )  e.  B  /\  N  e.  ZZ )  ->  (
( O `  (
y ( +g  `  G
) z ) ) 
||  N  <->  ( N
(.g `  G ) ( y ( +g  `  G
) z ) )  =  ( 0g `  G ) ) )
5528, 34, 36, 54syl3anc 1226 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Abel  /\  N  e.  ZZ )  /\  ( y  e.  B  /\  ( O `
 y )  ||  N ) )  /\  ( z  e.  B  /\  ( O `  z
)  ||  N )
)  ->  ( ( O `  ( y
( +g  `  G ) z ) )  ||  N 
<->  ( N (.g `  G
) ( y ( +g  `  G ) z ) )  =  ( 0g `  G
) ) )
5653, 55mpbird 232 . . . . . . . 8  |-  ( ( ( ( G  e. 
Abel  /\  N  e.  ZZ )  /\  ( y  e.  B  /\  ( O `
 y )  ||  N ) )  /\  ( z  e.  B  /\  ( O `  z
)  ||  N )
)  ->  ( O `  ( y ( +g  `  G ) z ) )  ||  N )
57 fveq2 5848 . . . . . . . . . 10  |-  ( x  =  ( y ( +g  `  G ) z )  ->  ( O `  x )  =  ( O `  ( y ( +g  `  G ) z ) ) )
5857breq1d 4449 . . . . . . . . 9  |-  ( x  =  ( y ( +g  `  G ) z )  ->  (
( O `  x
)  ||  N  <->  ( O `  ( y ( +g  `  G ) z ) )  ||  N ) )
5958elrab 3254 . . . . . . . 8  |-  ( ( y ( +g  `  G
) z )  e. 
{ x  e.  B  |  ( O `  x )  ||  N } 
<->  ( ( y ( +g  `  G ) z )  e.  B  /\  ( O `  (
y ( +g  `  G
) z ) ) 
||  N ) )
6034, 56, 59sylanbrc 662 . . . . . . 7  |-  ( ( ( ( G  e. 
Abel  /\  N  e.  ZZ )  /\  ( y  e.  B  /\  ( O `
 y )  ||  N ) )  /\  ( z  e.  B  /\  ( O `  z
)  ||  N )
)  ->  ( y
( +g  `  G ) z )  e.  {
x  e.  B  | 
( O `  x
)  ||  N }
)
6126, 60sylan2b 473 . . . . . 6  |-  ( ( ( ( G  e. 
Abel  /\  N  e.  ZZ )  /\  ( y  e.  B  /\  ( O `
 y )  ||  N ) )  /\  z  e.  { x  e.  B  |  ( O `  x )  ||  N } )  -> 
( y ( +g  `  G ) z )  e.  { x  e.  B  |  ( O `
 x )  ||  N } )
6261ralrimiva 2868 . . . . 5  |-  ( ( ( G  e.  Abel  /\  N  e.  ZZ )  /\  ( y  e.  B  /\  ( O `
 y )  ||  N ) )  ->  A. z  e.  { x  e.  B  |  ( O `  x )  ||  N }  ( y ( +g  `  G
) z )  e. 
{ x  e.  B  |  ( O `  x )  ||  N } )
63 eqid 2454 . . . . . . . 8  |-  ( invg `  G )  =  ( invg `  G )
645, 63grpinvcl 16297 . . . . . . 7  |-  ( ( G  e.  Grp  /\  y  e.  B )  ->  ( ( invg `  G ) `  y
)  e.  B )
6527, 29, 64syl2anc 659 . . . . . 6  |-  ( ( ( G  e.  Abel  /\  N  e.  ZZ )  /\  ( y  e.  B  /\  ( O `
 y )  ||  N ) )  -> 
( ( invg `  G ) `  y
)  e.  B )
669, 63, 5odinv 16785 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  y  e.  B )  ->  ( O `  (
( invg `  G ) `  y
) )  =  ( O `  y ) )
6727, 29, 66syl2anc 659 . . . . . . 7  |-  ( ( ( G  e.  Abel  /\  N  e.  ZZ )  /\  ( y  e.  B  /\  ( O `
 y )  ||  N ) )  -> 
( O `  (
( invg `  G ) `  y
) )  =  ( O `  y ) )
6867, 40eqbrtrd 4459 . . . . . 6  |-  ( ( ( G  e.  Abel  /\  N  e.  ZZ )  /\  ( y  e.  B  /\  ( O `
 y )  ||  N ) )  -> 
( O `  (
( invg `  G ) `  y
) )  ||  N
)
69 fveq2 5848 . . . . . . . 8  |-  ( x  =  ( ( invg `  G ) `
 y )  -> 
( O `  x
)  =  ( O `
 ( ( invg `  G ) `
 y ) ) )
7069breq1d 4449 . . . . . . 7  |-  ( x  =  ( ( invg `  G ) `
 y )  -> 
( ( O `  x )  ||  N  <->  ( O `  ( ( invg `  G
) `  y )
)  ||  N )
)
7170elrab 3254 . . . . . 6  |-  ( ( ( invg `  G ) `  y
)  e.  { x  e.  B  |  ( O `  x )  ||  N }  <->  ( (
( invg `  G ) `  y
)  e.  B  /\  ( O `  ( ( invg `  G
) `  y )
)  ||  N )
)
7265, 68, 71sylanbrc 662 . . . . 5  |-  ( ( ( G  e.  Abel  /\  N  e.  ZZ )  /\  ( y  e.  B  /\  ( O `
 y )  ||  N ) )  -> 
( ( invg `  G ) `  y
)  e.  { x  e.  B  |  ( O `  x )  ||  N } )
7362, 72jca 530 . . . 4  |-  ( ( ( G  e.  Abel  /\  N  e.  ZZ )  /\  ( y  e.  B  /\  ( O `
 y )  ||  N ) )  -> 
( A. z  e. 
{ x  e.  B  |  ( O `  x )  ||  N }  ( y ( +g  `  G ) z )  e.  {
x  e.  B  | 
( O `  x
)  ||  N }  /\  ( ( invg `  G ) `  y
)  e.  { x  e.  B  |  ( O `  x )  ||  N } ) )
7423, 73sylan2b 473 . . 3  |-  ( ( ( G  e.  Abel  /\  N  e.  ZZ )  /\  y  e.  {
x  e.  B  | 
( O `  x
)  ||  N }
)  ->  ( A. z  e.  { x  e.  B  |  ( O `  x )  ||  N }  ( y ( +g  `  G
) z )  e. 
{ x  e.  B  |  ( O `  x )  ||  N }  /\  ( ( invg `  G ) `
 y )  e. 
{ x  e.  B  |  ( O `  x )  ||  N } ) )
7574ralrimiva 2868 . 2  |-  ( ( G  e.  Abel  /\  N  e.  ZZ )  ->  A. y  e.  { x  e.  B  |  ( O `  x )  ||  N }  ( A. z  e.  { x  e.  B  |  ( O `  x )  ||  N }  ( y ( +g  `  G ) z )  e.  {
x  e.  B  | 
( O `  x
)  ||  N }  /\  ( ( invg `  G ) `  y
)  e.  { x  e.  B  |  ( O `  x )  ||  N } ) )
765, 32, 63issubg2 16418 . . 3  |-  ( G  e.  Grp  ->  ( { x  e.  B  |  ( O `  x )  ||  N }  e.  (SubGrp `  G
)  <->  ( { x  e.  B  |  ( O `  x )  ||  N }  C_  B  /\  { x  e.  B  |  ( O `  x )  ||  N }  =/=  (/)  /\  A. y  e.  { x  e.  B  |  ( O `  x )  ||  N }  ( A. z  e.  { x  e.  B  |  ( O `  x )  ||  N }  ( y ( +g  `  G ) z )  e.  {
x  e.  B  | 
( O `  x
)  ||  N }  /\  ( ( invg `  G ) `  y
)  e.  { x  e.  B  |  ( O `  x )  ||  N } ) ) ) )
774, 76syl 16 . 2  |-  ( ( G  e.  Abel  /\  N  e.  ZZ )  ->  ( { x  e.  B  |  ( O `  x )  ||  N }  e.  (SubGrp `  G
)  <->  ( { x  e.  B  |  ( O `  x )  ||  N }  C_  B  /\  { x  e.  B  |  ( O `  x )  ||  N }  =/=  (/)  /\  A. y  e.  { x  e.  B  |  ( O `  x )  ||  N }  ( A. z  e.  { x  e.  B  |  ( O `  x )  ||  N }  ( y ( +g  `  G ) z )  e.  {
x  e.  B  | 
( O `  x
)  ||  N }  /\  ( ( invg `  G ) `  y
)  e.  { x  e.  B  |  ( O `  x )  ||  N } ) ) ) )
782, 20, 75, 77mpbir3and 1177 1  |-  ( ( G  e.  Abel  /\  N  e.  ZZ )  ->  { x  e.  B  |  ( O `  x )  ||  N }  e.  (SubGrp `  G ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823    =/= wne 2649   A.wral 2804   {crab 2808    C_ wss 3461   (/)c0 3783   class class class wbr 4439   ` cfv 5570  (class class class)co 6270   1c1 9482   ZZcz 10860    || cdvds 14073   Basecbs 14719   +g cplusg 14787   0gc0g 14932   Grpcgrp 16255   invgcminusg 16256  .gcmg 16258  SubGrpcsubg 16397   odcod 16751   Abelcabl 17001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-inf2 8049  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-sup 7893  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11083  df-rp 11222  df-fz 11676  df-fzo 11800  df-fl 11910  df-mod 11979  df-seq 12093  df-exp 12152  df-cj 13017  df-re 13018  df-im 13019  df-sqrt 13153  df-abs 13154  df-dvds 14074  df-gcd 14232  df-ndx 14722  df-slot 14723  df-base 14724  df-sets 14725  df-ress 14726  df-plusg 14800  df-0g 14934  df-mgm 16074  df-sgrp 16113  df-mnd 16123  df-grp 16259  df-minusg 16260  df-sbg 16261  df-mulg 16262  df-subg 16400  df-od 16755  df-cmn 17002  df-abl 17003
This theorem is referenced by:  ablfacrplem  17314  ablfacrp  17315  ablfacrp2  17316  ablfac1b  17319
  Copyright terms: Public domain W3C validator