MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odd2np1lem Structured version   Unicode version

Theorem odd2np1lem 13590
Description: Lemma for odd2np1 13591. (Contributed by Scott Fenton, 3-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
odd2np1lem  |-  ( N  e.  NN0  ->  ( E. n  e.  ZZ  (
( 2  x.  n
)  +  1 )  =  N  \/  E. k  e.  ZZ  (
k  x.  2 )  =  N ) )
Distinct variable groups:    k, N    n, N

Proof of Theorem odd2np1lem
Dummy variables  j  m  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq2 2451 . . . 4  |-  ( j  =  0  ->  (
( ( 2  x.  n )  +  1 )  =  j  <->  ( (
2  x.  n )  +  1 )  =  0 ) )
21rexbidv 2735 . . 3  |-  ( j  =  0  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  j  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  0 ) )
3 eqeq2 2451 . . . 4  |-  ( j  =  0  ->  (
( k  x.  2 )  =  j  <->  ( k  x.  2 )  =  0 ) )
43rexbidv 2735 . . 3  |-  ( j  =  0  ->  ( E. k  e.  ZZ  ( k  x.  2 )  =  j  <->  E. k  e.  ZZ  ( k  x.  2 )  =  0 ) )
52, 4orbi12d 709 . 2  |-  ( j  =  0  ->  (
( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  j  \/  E. k  e.  ZZ  ( k  x.  2 )  =  j )  <->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  0  \/  E. k  e.  ZZ  ( k  x.  2 )  =  0 ) ) )
6 eqeq2 2451 . . . . 5  |-  ( j  =  m  ->  (
( ( 2  x.  n )  +  1 )  =  j  <->  ( (
2  x.  n )  +  1 )  =  m ) )
76rexbidv 2735 . . . 4  |-  ( j  =  m  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  j  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  m ) )
8 oveq2 6098 . . . . . . 7  |-  ( n  =  x  ->  (
2  x.  n )  =  ( 2  x.  x ) )
98oveq1d 6105 . . . . . 6  |-  ( n  =  x  ->  (
( 2  x.  n
)  +  1 )  =  ( ( 2  x.  x )  +  1 ) )
109eqeq1d 2450 . . . . 5  |-  ( n  =  x  ->  (
( ( 2  x.  n )  +  1 )  =  m  <->  ( (
2  x.  x )  +  1 )  =  m ) )
1110cbvrexv 2947 . . . 4  |-  ( E. n  e.  ZZ  (
( 2  x.  n
)  +  1 )  =  m  <->  E. x  e.  ZZ  ( ( 2  x.  x )  +  1 )  =  m )
127, 11syl6bb 261 . . 3  |-  ( j  =  m  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  j  <->  E. x  e.  ZZ  ( ( 2  x.  x )  +  1 )  =  m ) )
13 eqeq2 2451 . . . . 5  |-  ( j  =  m  ->  (
( k  x.  2 )  =  j  <->  ( k  x.  2 )  =  m ) )
1413rexbidv 2735 . . . 4  |-  ( j  =  m  ->  ( E. k  e.  ZZ  ( k  x.  2 )  =  j  <->  E. k  e.  ZZ  ( k  x.  2 )  =  m ) )
15 oveq1 6097 . . . . . 6  |-  ( k  =  y  ->  (
k  x.  2 )  =  ( y  x.  2 ) )
1615eqeq1d 2450 . . . . 5  |-  ( k  =  y  ->  (
( k  x.  2 )  =  m  <->  ( y  x.  2 )  =  m ) )
1716cbvrexv 2947 . . . 4  |-  ( E. k  e.  ZZ  (
k  x.  2 )  =  m  <->  E. y  e.  ZZ  ( y  x.  2 )  =  m )
1814, 17syl6bb 261 . . 3  |-  ( j  =  m  ->  ( E. k  e.  ZZ  ( k  x.  2 )  =  j  <->  E. y  e.  ZZ  ( y  x.  2 )  =  m ) )
1912, 18orbi12d 709 . 2  |-  ( j  =  m  ->  (
( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  j  \/  E. k  e.  ZZ  ( k  x.  2 )  =  j )  <->  ( E. x  e.  ZZ  ( ( 2  x.  x )  +  1 )  =  m  \/  E. y  e.  ZZ  ( y  x.  2 )  =  m ) ) )
20 eqeq2 2451 . . . 4  |-  ( j  =  ( m  + 
1 )  ->  (
( ( 2  x.  n )  +  1 )  =  j  <->  ( (
2  x.  n )  +  1 )  =  ( m  +  1 ) ) )
2120rexbidv 2735 . . 3  |-  ( j  =  ( m  + 
1 )  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  j  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  ( m  +  1 ) ) )
22 eqeq2 2451 . . . 4  |-  ( j  =  ( m  + 
1 )  ->  (
( k  x.  2 )  =  j  <->  ( k  x.  2 )  =  ( m  +  1 ) ) )
2322rexbidv 2735 . . 3  |-  ( j  =  ( m  + 
1 )  ->  ( E. k  e.  ZZ  ( k  x.  2 )  =  j  <->  E. k  e.  ZZ  ( k  x.  2 )  =  ( m  +  1 ) ) )
2421, 23orbi12d 709 . 2  |-  ( j  =  ( m  + 
1 )  ->  (
( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  j  \/  E. k  e.  ZZ  ( k  x.  2 )  =  j )  <->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  ( m  +  1 )  \/  E. k  e.  ZZ  ( k  x.  2 )  =  ( m  +  1 ) ) ) )
25 eqeq2 2451 . . . 4  |-  ( j  =  N  ->  (
( ( 2  x.  n )  +  1 )  =  j  <->  ( (
2  x.  n )  +  1 )  =  N ) )
2625rexbidv 2735 . . 3  |-  ( j  =  N  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  j  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
27 eqeq2 2451 . . . 4  |-  ( j  =  N  ->  (
( k  x.  2 )  =  j  <->  ( k  x.  2 )  =  N ) )
2827rexbidv 2735 . . 3  |-  ( j  =  N  ->  ( E. k  e.  ZZ  ( k  x.  2 )  =  j  <->  E. k  e.  ZZ  ( k  x.  2 )  =  N ) )
2926, 28orbi12d 709 . 2  |-  ( j  =  N  ->  (
( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  j  \/  E. k  e.  ZZ  ( k  x.  2 )  =  j )  <->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  \/  E. k  e.  ZZ  ( k  x.  2 )  =  N ) ) )
30 0z 10656 . . . 4  |-  0  e.  ZZ
31 2cn 10391 . . . . 5  |-  2  e.  CC
3231mul02i 9557 . . . 4  |-  ( 0  x.  2 )  =  0
33 oveq1 6097 . . . . . 6  |-  ( k  =  0  ->  (
k  x.  2 )  =  ( 0  x.  2 ) )
3433eqeq1d 2450 . . . . 5  |-  ( k  =  0  ->  (
( k  x.  2 )  =  0  <->  (
0  x.  2 )  =  0 ) )
3534rspcev 3072 . . . 4  |-  ( ( 0  e.  ZZ  /\  ( 0  x.  2 )  =  0 )  ->  E. k  e.  ZZ  ( k  x.  2 )  =  0 )
3630, 32, 35mp2an 672 . . 3  |-  E. k  e.  ZZ  ( k  x.  2 )  =  0
3736olci 391 . 2  |-  ( E. n  e.  ZZ  (
( 2  x.  n
)  +  1 )  =  0  \/  E. k  e.  ZZ  (
k  x.  2 )  =  0 )
38 orcom 387 . . 3  |-  ( ( E. x  e.  ZZ  ( ( 2  x.  x )  +  1 )  =  m  \/ 
E. y  e.  ZZ  ( y  x.  2 )  =  m )  <-> 
( E. y  e.  ZZ  ( y  x.  2 )  =  m  \/  E. x  e.  ZZ  ( ( 2  x.  x )  +  1 )  =  m ) )
39 zcn 10650 . . . . . . . . 9  |-  ( y  e.  ZZ  ->  y  e.  CC )
40 mulcom 9367 . . . . . . . . 9  |-  ( ( y  e.  CC  /\  2  e.  CC )  ->  ( y  x.  2 )  =  ( 2  x.  y ) )
4139, 31, 40sylancl 662 . . . . . . . 8  |-  ( y  e.  ZZ  ->  (
y  x.  2 )  =  ( 2  x.  y ) )
4241adantl 466 . . . . . . 7  |-  ( ( m  e.  NN0  /\  y  e.  ZZ )  ->  ( y  x.  2 )  =  ( 2  x.  y ) )
4342eqeq1d 2450 . . . . . 6  |-  ( ( m  e.  NN0  /\  y  e.  ZZ )  ->  ( ( y  x.  2 )  =  m  <-> 
( 2  x.  y
)  =  m ) )
44 eqid 2442 . . . . . . . . 9  |-  ( ( 2  x.  y )  +  1 )  =  ( ( 2  x.  y )  +  1 )
45 oveq2 6098 . . . . . . . . . . . 12  |-  ( n  =  y  ->  (
2  x.  n )  =  ( 2  x.  y ) )
4645oveq1d 6105 . . . . . . . . . . 11  |-  ( n  =  y  ->  (
( 2  x.  n
)  +  1 )  =  ( ( 2  x.  y )  +  1 ) )
4746eqeq1d 2450 . . . . . . . . . 10  |-  ( n  =  y  ->  (
( ( 2  x.  n )  +  1 )  =  ( ( 2  x.  y )  +  1 )  <->  ( (
2  x.  y )  +  1 )  =  ( ( 2  x.  y )  +  1 ) ) )
4847rspcev 3072 . . . . . . . . 9  |-  ( ( y  e.  ZZ  /\  ( ( 2  x.  y )  +  1 )  =  ( ( 2  x.  y )  +  1 ) )  ->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  ( ( 2  x.  y )  +  1 ) )
4944, 48mpan2 671 . . . . . . . 8  |-  ( y  e.  ZZ  ->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  ( ( 2  x.  y
)  +  1 ) )
50 oveq1 6097 . . . . . . . . . 10  |-  ( ( 2  x.  y )  =  m  ->  (
( 2  x.  y
)  +  1 )  =  ( m  + 
1 ) )
5150eqeq2d 2453 . . . . . . . . 9  |-  ( ( 2  x.  y )  =  m  ->  (
( ( 2  x.  n )  +  1 )  =  ( ( 2  x.  y )  +  1 )  <->  ( (
2  x.  n )  +  1 )  =  ( m  +  1 ) ) )
5251rexbidv 2735 . . . . . . . 8  |-  ( ( 2  x.  y )  =  m  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  ( ( 2  x.  y )  +  1 )  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  ( m  +  1 ) ) )
5349, 52syl5ibcom 220 . . . . . . 7  |-  ( y  e.  ZZ  ->  (
( 2  x.  y
)  =  m  ->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  ( m  +  1 ) ) )
5453adantl 466 . . . . . 6  |-  ( ( m  e.  NN0  /\  y  e.  ZZ )  ->  ( ( 2  x.  y )  =  m  ->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  ( m  +  1 ) ) )
5543, 54sylbid 215 . . . . 5  |-  ( ( m  e.  NN0  /\  y  e.  ZZ )  ->  ( ( y  x.  2 )  =  m  ->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  ( m  +  1 ) ) )
5655rexlimdva 2840 . . . 4  |-  ( m  e.  NN0  ->  ( E. y  e.  ZZ  (
y  x.  2 )  =  m  ->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  ( m  +  1 ) ) )
57 peano2z 10685 . . . . . . . 8  |-  ( x  e.  ZZ  ->  (
x  +  1 )  e.  ZZ )
5857adantl 466 . . . . . . 7  |-  ( ( m  e.  NN0  /\  x  e.  ZZ )  ->  ( x  +  1 )  e.  ZZ )
59 zcn 10650 . . . . . . . . 9  |-  ( x  e.  ZZ  ->  x  e.  CC )
60 mulcom 9367 . . . . . . . . . . . . 13  |-  ( ( x  e.  CC  /\  2  e.  CC )  ->  ( x  x.  2 )  =  ( 2  x.  x ) )
6131, 60mpan2 671 . . . . . . . . . . . 12  |-  ( x  e.  CC  ->  (
x  x.  2 )  =  ( 2  x.  x ) )
6231mulid2i 9388 . . . . . . . . . . . . 13  |-  ( 1  x.  2 )  =  2
6362a1i 11 . . . . . . . . . . . 12  |-  ( x  e.  CC  ->  (
1  x.  2 )  =  2 )
6461, 63oveq12d 6108 . . . . . . . . . . 11  |-  ( x  e.  CC  ->  (
( x  x.  2 )  +  ( 1  x.  2 ) )  =  ( ( 2  x.  x )  +  2 ) )
65 df-2 10379 . . . . . . . . . . . 12  |-  2  =  ( 1  +  1 )
6665oveq2i 6101 . . . . . . . . . . 11  |-  ( ( 2  x.  x )  +  2 )  =  ( ( 2  x.  x )  +  ( 1  +  1 ) )
6764, 66syl6eq 2490 . . . . . . . . . 10  |-  ( x  e.  CC  ->  (
( x  x.  2 )  +  ( 1  x.  2 ) )  =  ( ( 2  x.  x )  +  ( 1  +  1 ) ) )
68 ax-1cn 9339 . . . . . . . . . . 11  |-  1  e.  CC
69 adddir 9376 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  1  e.  CC  /\  2  e.  CC )  ->  (
( x  +  1 )  x.  2 )  =  ( ( x  x.  2 )  +  ( 1  x.  2 ) ) )
7068, 31, 69mp3an23 1306 . . . . . . . . . 10  |-  ( x  e.  CC  ->  (
( x  +  1 )  x.  2 )  =  ( ( x  x.  2 )  +  ( 1  x.  2 ) ) )
71 mulcl 9365 . . . . . . . . . . . 12  |-  ( ( 2  e.  CC  /\  x  e.  CC )  ->  ( 2  x.  x
)  e.  CC )
7231, 71mpan 670 . . . . . . . . . . 11  |-  ( x  e.  CC  ->  (
2  x.  x )  e.  CC )
73 addass 9368 . . . . . . . . . . . 12  |-  ( ( ( 2  x.  x
)  e.  CC  /\  1  e.  CC  /\  1  e.  CC )  ->  (
( ( 2  x.  x )  +  1 )  +  1 )  =  ( ( 2  x.  x )  +  ( 1  +  1 ) ) )
7468, 68, 73mp3an23 1306 . . . . . . . . . . 11  |-  ( ( 2  x.  x )  e.  CC  ->  (
( ( 2  x.  x )  +  1 )  +  1 )  =  ( ( 2  x.  x )  +  ( 1  +  1 ) ) )
7572, 74syl 16 . . . . . . . . . 10  |-  ( x  e.  CC  ->  (
( ( 2  x.  x )  +  1 )  +  1 )  =  ( ( 2  x.  x )  +  ( 1  +  1 ) ) )
7667, 70, 753eqtr4d 2484 . . . . . . . . 9  |-  ( x  e.  CC  ->  (
( x  +  1 )  x.  2 )  =  ( ( ( 2  x.  x )  +  1 )  +  1 ) )
7759, 76syl 16 . . . . . . . 8  |-  ( x  e.  ZZ  ->  (
( x  +  1 )  x.  2 )  =  ( ( ( 2  x.  x )  +  1 )  +  1 ) )
7877adantl 466 . . . . . . 7  |-  ( ( m  e.  NN0  /\  x  e.  ZZ )  ->  ( ( x  + 
1 )  x.  2 )  =  ( ( ( 2  x.  x
)  +  1 )  +  1 ) )
79 oveq1 6097 . . . . . . . . 9  |-  ( k  =  ( x  + 
1 )  ->  (
k  x.  2 )  =  ( ( x  +  1 )  x.  2 ) )
8079eqeq1d 2450 . . . . . . . 8  |-  ( k  =  ( x  + 
1 )  ->  (
( k  x.  2 )  =  ( ( ( 2  x.  x
)  +  1 )  +  1 )  <->  ( (
x  +  1 )  x.  2 )  =  ( ( ( 2  x.  x )  +  1 )  +  1 ) ) )
8180rspcev 3072 . . . . . . 7  |-  ( ( ( x  +  1 )  e.  ZZ  /\  ( ( x  + 
1 )  x.  2 )  =  ( ( ( 2  x.  x
)  +  1 )  +  1 ) )  ->  E. k  e.  ZZ  ( k  x.  2 )  =  ( ( ( 2  x.  x
)  +  1 )  +  1 ) )
8258, 78, 81syl2anc 661 . . . . . 6  |-  ( ( m  e.  NN0  /\  x  e.  ZZ )  ->  E. k  e.  ZZ  ( k  x.  2 )  =  ( ( ( 2  x.  x
)  +  1 )  +  1 ) )
83 oveq1 6097 . . . . . . . 8  |-  ( ( ( 2  x.  x
)  +  1 )  =  m  ->  (
( ( 2  x.  x )  +  1 )  +  1 )  =  ( m  + 
1 ) )
8483eqeq2d 2453 . . . . . . 7  |-  ( ( ( 2  x.  x
)  +  1 )  =  m  ->  (
( k  x.  2 )  =  ( ( ( 2  x.  x
)  +  1 )  +  1 )  <->  ( k  x.  2 )  =  ( m  +  1 ) ) )
8584rexbidv 2735 . . . . . 6  |-  ( ( ( 2  x.  x
)  +  1 )  =  m  ->  ( E. k  e.  ZZ  ( k  x.  2 )  =  ( ( ( 2  x.  x
)  +  1 )  +  1 )  <->  E. k  e.  ZZ  ( k  x.  2 )  =  ( m  +  1 ) ) )
8682, 85syl5ibcom 220 . . . . 5  |-  ( ( m  e.  NN0  /\  x  e.  ZZ )  ->  ( ( ( 2  x.  x )  +  1 )  =  m  ->  E. k  e.  ZZ  ( k  x.  2 )  =  ( m  +  1 ) ) )
8786rexlimdva 2840 . . . 4  |-  ( m  e.  NN0  ->  ( E. x  e.  ZZ  (
( 2  x.  x
)  +  1 )  =  m  ->  E. k  e.  ZZ  ( k  x.  2 )  =  ( m  +  1 ) ) )
8856, 87orim12d 834 . . 3  |-  ( m  e.  NN0  ->  ( ( E. y  e.  ZZ  ( y  x.  2 )  =  m  \/ 
E. x  e.  ZZ  ( ( 2  x.  x )  +  1 )  =  m )  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  ( m  +  1 )  \/  E. k  e.  ZZ  ( k  x.  2 )  =  ( m  +  1 ) ) ) )
8938, 88syl5bi 217 . 2  |-  ( m  e.  NN0  ->  ( ( E. x  e.  ZZ  ( ( 2  x.  x )  +  1 )  =  m  \/ 
E. y  e.  ZZ  ( y  x.  2 )  =  m )  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  ( m  +  1 )  \/  E. k  e.  ZZ  ( k  x.  2 )  =  ( m  +  1 ) ) ) )
905, 19, 24, 29, 37, 89nn0ind 10737 1  |-  ( N  e.  NN0  ->  ( E. n  e.  ZZ  (
( 2  x.  n
)  +  1 )  =  N  \/  E. k  e.  ZZ  (
k  x.  2 )  =  N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    /\ wa 369    = wceq 1369    e. wcel 1756   E.wrex 2715  (class class class)co 6090   CCcc 9279   0cc0 9281   1c1 9282    + caddc 9284    x. cmul 9286   2c2 10370   NN0cn0 10578   ZZcz 10645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4412  ax-nul 4420  ax-pow 4469  ax-pr 4530  ax-un 6371  ax-resscn 9338  ax-1cn 9339  ax-icn 9340  ax-addcl 9341  ax-addrcl 9342  ax-mulcl 9343  ax-mulrcl 9344  ax-mulcom 9345  ax-addass 9346  ax-mulass 9347  ax-distr 9348  ax-i2m1 9349  ax-1ne0 9350  ax-1rid 9351  ax-rnegex 9352  ax-rrecex 9353  ax-cnre 9354  ax-pre-lttri 9355  ax-pre-lttrn 9356  ax-pre-ltadd 9357  ax-pre-mulgt0 9358
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2719  df-rex 2720  df-reu 2721  df-rab 2723  df-v 2973  df-sbc 3186  df-csb 3288  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-pss 3343  df-nul 3637  df-if 3791  df-pw 3861  df-sn 3877  df-pr 3879  df-tp 3881  df-op 3883  df-uni 4091  df-iun 4172  df-br 4292  df-opab 4350  df-mpt 4351  df-tr 4385  df-eprel 4631  df-id 4635  df-po 4640  df-so 4641  df-fr 4678  df-we 4680  df-ord 4721  df-on 4722  df-lim 4723  df-suc 4724  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5380  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-riota 6051  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-recs 6831  df-rdg 6865  df-er 7100  df-en 7310  df-dom 7311  df-sdom 7312  df-pnf 9419  df-mnf 9420  df-xr 9421  df-ltxr 9422  df-le 9423  df-sub 9596  df-neg 9597  df-nn 10322  df-2 10379  df-n0 10579  df-z 10646
This theorem is referenced by:  odd2np1  13591
  Copyright terms: Public domain W3C validator