MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odd2np1 Structured version   Visualization version   Unicode version

Theorem odd2np1 14443
Description: An integer is odd iff it is one plus twice another integer. (Contributed by Scott Fenton, 3-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
odd2np1  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
Distinct variable group:    n, N

Proof of Theorem odd2np1
Dummy variables  k  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2z 10993 . . . 4  |-  2  e.  ZZ
2 divides 14384 . . . 4  |-  ( ( 2  e.  ZZ  /\  N  e.  ZZ )  ->  ( 2  ||  N  <->  E. k  e.  ZZ  (
k  x.  2 )  =  N ) )
31, 2mpan 684 . . 3  |-  ( N  e.  ZZ  ->  (
2  ||  N  <->  E. k  e.  ZZ  ( k  x.  2 )  =  N ) )
43notbid 301 . 2  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  <->  -.  E. k  e.  ZZ  ( k  x.  2 )  =  N ) )
5 elznn0 10976 . . . . 5  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  e.  NN0  \/  -u N  e.  NN0 ) ) )
6 odd2np1lem 14442 . . . . . . 7  |-  ( N  e.  NN0  ->  ( E. n  e.  ZZ  (
( 2  x.  n
)  +  1 )  =  N  \/  E. k  e.  ZZ  (
k  x.  2 )  =  N ) )
76adantl 473 . . . . . 6  |-  ( ( N  e.  RR  /\  N  e.  NN0 )  -> 
( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  \/  E. k  e.  ZZ  ( k  x.  2 )  =  N ) )
8 odd2np1lem 14442 . . . . . . . 8  |-  ( -u N  e.  NN0  ->  ( E. x  e.  ZZ  ( ( 2  x.  x )  +  1 )  =  -u N  \/  E. y  e.  ZZ  ( y  x.  2 )  =  -u N
) )
9 peano2z 11002 . . . . . . . . . . . . . 14  |-  ( x  e.  ZZ  ->  (
x  +  1 )  e.  ZZ )
10 znegcl 10996 . . . . . . . . . . . . . 14  |-  ( ( x  +  1 )  e.  ZZ  ->  -u (
x  +  1 )  e.  ZZ )
119, 10syl 17 . . . . . . . . . . . . 13  |-  ( x  e.  ZZ  ->  -u (
x  +  1 )  e.  ZZ )
1211ad2antlr 741 . . . . . . . . . . . 12  |-  ( ( ( N  e.  RR  /\  x  e.  ZZ )  /\  ( ( 2  x.  x )  +  1 )  =  -u N )  ->  -u (
x  +  1 )  e.  ZZ )
13 zcn 10966 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ZZ  ->  x  e.  CC )
14 2cn 10702 . . . . . . . . . . . . . . . . . . 19  |-  2  e.  CC
15 mulcl 9641 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2  e.  CC  /\  x  e.  CC )  ->  ( 2  x.  x
)  e.  CC )
1614, 15mpan 684 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  CC  ->  (
2  x.  x )  e.  CC )
17 peano2cn 9823 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2  x.  x )  e.  CC  ->  (
( 2  x.  x
)  +  1 )  e.  CC )
1816, 17syl 17 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  CC  ->  (
( 2  x.  x
)  +  1 )  e.  CC )
1913, 18syl 17 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ZZ  ->  (
( 2  x.  x
)  +  1 )  e.  CC )
2019adantl 473 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  RR  /\  x  e.  ZZ )  ->  ( ( 2  x.  x )  +  1 )  e.  CC )
21 simpl 464 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  RR  /\  x  e.  ZZ )  ->  N  e.  RR )
2221recnd 9687 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  RR  /\  x  e.  ZZ )  ->  N  e.  CC )
23 negcon2 9947 . . . . . . . . . . . . . . 15  |-  ( ( ( ( 2  x.  x )  +  1 )  e.  CC  /\  N  e.  CC )  ->  ( ( ( 2  x.  x )  +  1 )  =  -u N 
<->  N  =  -u (
( 2  x.  x
)  +  1 ) ) )
2420, 22, 23syl2anc 673 . . . . . . . . . . . . . 14  |-  ( ( N  e.  RR  /\  x  e.  ZZ )  ->  ( ( ( 2  x.  x )  +  1 )  =  -u N 
<->  N  =  -u (
( 2  x.  x
)  +  1 ) ) )
25 eqcom 2478 . . . . . . . . . . . . . . 15  |-  ( N  =  -u ( ( 2  x.  x )  +  1 )  <->  -u ( ( 2  x.  x )  +  1 )  =  N )
2614, 13, 15sylancr 676 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  ZZ  ->  (
2  x.  x )  e.  CC )
27 ax-1cn 9615 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  1  e.  CC
2814, 27mulcli 9666 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( 2  x.  1 )  e.  CC
29 addsubass 9905 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( 2  x.  x
)  e.  CC  /\  ( 2  x.  1 )  e.  CC  /\  1  e.  CC )  ->  ( ( ( 2  x.  x )  +  ( 2  x.  1 ) )  -  1 )  =  ( ( 2  x.  x )  +  ( ( 2  x.  1 )  - 
1 ) ) )
3028, 27, 29mp3an23 1382 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 2  x.  x )  e.  CC  ->  (
( ( 2  x.  x )  +  ( 2  x.  1 ) )  -  1 )  =  ( ( 2  x.  x )  +  ( ( 2  x.  1 )  -  1 ) ) )
3126, 30syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  ZZ  ->  (
( ( 2  x.  x )  +  ( 2  x.  1 ) )  -  1 )  =  ( ( 2  x.  x )  +  ( ( 2  x.  1 )  -  1 ) ) )
32 2t1e2 10781 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( 2  x.  1 )  =  2
3332oveq1i 6318 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( 2  x.  1 )  -  1 )  =  ( 2  -  1 )
34 2m1e1 10746 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( 2  -  1 )  =  1
3533, 34eqtri 2493 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 2  x.  1 )  -  1 )  =  1
3635oveq2i 6319 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 2  x.  x )  +  ( ( 2  x.  1 )  - 
1 ) )  =  ( ( 2  x.  x )  +  1 )
3731, 36syl6req 2522 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ZZ  ->  (
( 2  x.  x
)  +  1 )  =  ( ( ( 2  x.  x )  +  ( 2  x.  1 ) )  - 
1 ) )
38 adddi 9646 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( 2  e.  CC  /\  x  e.  CC  /\  1  e.  CC )  ->  (
2  x.  ( x  +  1 ) )  =  ( ( 2  x.  x )  +  ( 2  x.  1 ) ) )
3914, 27, 38mp3an13 1381 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  CC  ->  (
2  x.  ( x  +  1 ) )  =  ( ( 2  x.  x )  +  ( 2  x.  1 ) ) )
4013, 39syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  ZZ  ->  (
2  x.  ( x  +  1 ) )  =  ( ( 2  x.  x )  +  ( 2  x.  1 ) ) )
4140oveq1d 6323 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ZZ  ->  (
( 2  x.  (
x  +  1 ) )  -  1 )  =  ( ( ( 2  x.  x )  +  ( 2  x.  1 ) )  - 
1 ) )
4237, 41eqtr4d 2508 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ZZ  ->  (
( 2  x.  x
)  +  1 )  =  ( ( 2  x.  ( x  + 
1 ) )  - 
1 ) )
4342negeqd 9889 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ZZ  ->  -u (
( 2  x.  x
)  +  1 )  =  -u ( ( 2  x.  ( x  + 
1 ) )  - 
1 ) )
449zcnd 11064 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  ZZ  ->  (
x  +  1 )  e.  CC )
45 mulneg2 10077 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 2  e.  CC  /\  ( x  +  1
)  e.  CC )  ->  ( 2  x.  -u ( x  +  1 ) )  =  -u ( 2  x.  (
x  +  1 ) ) )
4614, 44, 45sylancr 676 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ZZ  ->  (
2  x.  -u (
x  +  1 ) )  =  -u (
2  x.  ( x  +  1 ) ) )
4746oveq1d 6323 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ZZ  ->  (
( 2  x.  -u (
x  +  1 ) )  +  1 )  =  ( -u (
2  x.  ( x  +  1 ) )  +  1 ) )
48 mulcl 9641 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 2  e.  CC  /\  ( x  +  1
)  e.  CC )  ->  ( 2  x.  ( x  +  1 ) )  e.  CC )
4914, 44, 48sylancr 676 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ZZ  ->  (
2  x.  ( x  +  1 ) )  e.  CC )
50 negsubdi 9950 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( 2  x.  (
x  +  1 ) )  e.  CC  /\  1  e.  CC )  -> 
-u ( ( 2  x.  ( x  + 
1 ) )  - 
1 )  =  (
-u ( 2  x.  ( x  +  1 ) )  +  1 ) )
5149, 27, 50sylancl 675 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ZZ  ->  -u (
( 2  x.  (
x  +  1 ) )  -  1 )  =  ( -u (
2  x.  ( x  +  1 ) )  +  1 ) )
5247, 51eqtr4d 2508 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ZZ  ->  (
( 2  x.  -u (
x  +  1 ) )  +  1 )  =  -u ( ( 2  x.  ( x  + 
1 ) )  - 
1 ) )
5343, 52eqtr4d 2508 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ZZ  ->  -u (
( 2  x.  x
)  +  1 )  =  ( ( 2  x.  -u ( x  + 
1 ) )  +  1 ) )
5453adantl 473 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  RR  /\  x  e.  ZZ )  -> 
-u ( ( 2  x.  x )  +  1 )  =  ( ( 2  x.  -u (
x  +  1 ) )  +  1 ) )
5554eqeq1d 2473 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  RR  /\  x  e.  ZZ )  ->  ( -u ( ( 2  x.  x )  +  1 )  =  N  <->  ( ( 2  x.  -u ( x  + 
1 ) )  +  1 )  =  N ) )
5625, 55syl5bb 265 . . . . . . . . . . . . . 14  |-  ( ( N  e.  RR  /\  x  e.  ZZ )  ->  ( N  =  -u ( ( 2  x.  x )  +  1 )  <->  ( ( 2  x.  -u ( x  + 
1 ) )  +  1 )  =  N ) )
5724, 56bitrd 261 . . . . . . . . . . . . 13  |-  ( ( N  e.  RR  /\  x  e.  ZZ )  ->  ( ( ( 2  x.  x )  +  1 )  =  -u N 
<->  ( ( 2  x.  -u ( x  +  1 ) )  +  1 )  =  N ) )
5857biimpa 492 . . . . . . . . . . . 12  |-  ( ( ( N  e.  RR  /\  x  e.  ZZ )  /\  ( ( 2  x.  x )  +  1 )  =  -u N )  ->  (
( 2  x.  -u (
x  +  1 ) )  +  1 )  =  N )
59 oveq2 6316 . . . . . . . . . . . . . . 15  |-  ( n  =  -u ( x  + 
1 )  ->  (
2  x.  n )  =  ( 2  x.  -u ( x  +  1 ) ) )
6059oveq1d 6323 . . . . . . . . . . . . . 14  |-  ( n  =  -u ( x  + 
1 )  ->  (
( 2  x.  n
)  +  1 )  =  ( ( 2  x.  -u ( x  + 
1 ) )  +  1 ) )
6160eqeq1d 2473 . . . . . . . . . . . . 13  |-  ( n  =  -u ( x  + 
1 )  ->  (
( ( 2  x.  n )  +  1 )  =  N  <->  ( (
2  x.  -u (
x  +  1 ) )  +  1 )  =  N ) )
6261rspcev 3136 . . . . . . . . . . . 12  |-  ( (
-u ( x  + 
1 )  e.  ZZ  /\  ( ( 2  x.  -u ( x  +  1 ) )  +  1 )  =  N )  ->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N )
6312, 58, 62syl2anc 673 . . . . . . . . . . 11  |-  ( ( ( N  e.  RR  /\  x  e.  ZZ )  /\  ( ( 2  x.  x )  +  1 )  =  -u N )  ->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N )
6463ex 441 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  x  e.  ZZ )  ->  ( ( ( 2  x.  x )  +  1 )  =  -u N  ->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
6564rexlimdva 2871 . . . . . . . . 9  |-  ( N  e.  RR  ->  ( E. x  e.  ZZ  ( ( 2  x.  x )  +  1 )  =  -u N  ->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
66 znegcl 10996 . . . . . . . . . . . . 13  |-  ( y  e.  ZZ  ->  -u y  e.  ZZ )
6766ad2antlr 741 . . . . . . . . . . . 12  |-  ( ( ( N  e.  RR  /\  y  e.  ZZ )  /\  ( y  x.  2 )  =  -u N )  ->  -u y  e.  ZZ )
68 zcn 10966 . . . . . . . . . . . . . . . 16  |-  ( y  e.  ZZ  ->  y  e.  CC )
69 mulcl 9641 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  CC  /\  2  e.  CC )  ->  ( y  x.  2 )  e.  CC )
7068, 14, 69sylancl 675 . . . . . . . . . . . . . . 15  |-  ( y  e.  ZZ  ->  (
y  x.  2 )  e.  CC )
71 recn 9647 . . . . . . . . . . . . . . 15  |-  ( N  e.  RR  ->  N  e.  CC )
72 negcon2 9947 . . . . . . . . . . . . . . 15  |-  ( ( ( y  x.  2 )  e.  CC  /\  N  e.  CC )  ->  ( ( y  x.  2 )  =  -u N 
<->  N  =  -u (
y  x.  2 ) ) )
7370, 71, 72syl2anr 486 . . . . . . . . . . . . . 14  |-  ( ( N  e.  RR  /\  y  e.  ZZ )  ->  ( ( y  x.  2 )  =  -u N 
<->  N  =  -u (
y  x.  2 ) ) )
74 mulneg1 10076 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  CC  /\  2  e.  CC )  ->  ( -u y  x.  2 )  =  -u ( y  x.  2 ) )
7568, 14, 74sylancl 675 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ZZ  ->  ( -u y  x.  2 )  =  -u ( y  x.  2 ) )
7675adantl 473 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  RR  /\  y  e.  ZZ )  ->  ( -u y  x.  2 )  =  -u ( y  x.  2 ) )
7776eqeq1d 2473 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  RR  /\  y  e.  ZZ )  ->  ( ( -u y  x.  2 )  =  N  <->  -u ( y  x.  2 )  =  N ) )
78 eqcom 2478 . . . . . . . . . . . . . . 15  |-  ( N  =  -u ( y  x.  2 )  <->  -u ( y  x.  2 )  =  N )
7977, 78syl6rbbr 272 . . . . . . . . . . . . . 14  |-  ( ( N  e.  RR  /\  y  e.  ZZ )  ->  ( N  =  -u ( y  x.  2 )  <->  ( -u y  x.  2 )  =  N ) )
8073, 79bitrd 261 . . . . . . . . . . . . 13  |-  ( ( N  e.  RR  /\  y  e.  ZZ )  ->  ( ( y  x.  2 )  =  -u N 
<->  ( -u y  x.  2 )  =  N ) )
8180biimpa 492 . . . . . . . . . . . 12  |-  ( ( ( N  e.  RR  /\  y  e.  ZZ )  /\  ( y  x.  2 )  =  -u N )  ->  ( -u y  x.  2 )  =  N )
82 oveq1 6315 . . . . . . . . . . . . . 14  |-  ( k  =  -u y  ->  (
k  x.  2 )  =  ( -u y  x.  2 ) )
8382eqeq1d 2473 . . . . . . . . . . . . 13  |-  ( k  =  -u y  ->  (
( k  x.  2 )  =  N  <->  ( -u y  x.  2 )  =  N ) )
8483rspcev 3136 . . . . . . . . . . . 12  |-  ( (
-u y  e.  ZZ  /\  ( -u y  x.  2 )  =  N )  ->  E. k  e.  ZZ  ( k  x.  2 )  =  N )
8567, 81, 84syl2anc 673 . . . . . . . . . . 11  |-  ( ( ( N  e.  RR  /\  y  e.  ZZ )  /\  ( y  x.  2 )  =  -u N )  ->  E. k  e.  ZZ  ( k  x.  2 )  =  N )
8685ex 441 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  y  e.  ZZ )  ->  ( ( y  x.  2 )  =  -u N  ->  E. k  e.  ZZ  ( k  x.  2 )  =  N ) )
8786rexlimdva 2871 . . . . . . . . 9  |-  ( N  e.  RR  ->  ( E. y  e.  ZZ  ( y  x.  2 )  =  -u N  ->  E. k  e.  ZZ  ( k  x.  2 )  =  N ) )
8865, 87orim12d 856 . . . . . . . 8  |-  ( N  e.  RR  ->  (
( E. x  e.  ZZ  ( ( 2  x.  x )  +  1 )  =  -u N  \/  E. y  e.  ZZ  ( y  x.  2 )  =  -u N )  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  \/  E. k  e.  ZZ  (
k  x.  2 )  =  N ) ) )
898, 88syl5 32 . . . . . . 7  |-  ( N  e.  RR  ->  ( -u N  e.  NN0  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  \/  E. k  e.  ZZ  (
k  x.  2 )  =  N ) ) )
9089imp 436 . . . . . 6  |-  ( ( N  e.  RR  /\  -u N  e.  NN0 )  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  \/  E. k  e.  ZZ  ( k  x.  2 )  =  N ) )
917, 90jaodan 802 . . . . 5  |-  ( ( N  e.  RR  /\  ( N  e.  NN0  \/  -u N  e.  NN0 ) )  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  \/  E. k  e.  ZZ  (
k  x.  2 )  =  N ) )
925, 91sylbi 200 . . . 4  |-  ( N  e.  ZZ  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  \/  E. k  e.  ZZ  (
k  x.  2 )  =  N ) )
93 halfnz 11037 . . . . 5  |-  -.  (
1  /  2 )  e.  ZZ
94 reeanv 2944 . . . . . 6  |-  ( E. n  e.  ZZ  E. k  e.  ZZ  (
( ( 2  x.  n )  +  1 )  =  N  /\  ( k  x.  2 )  =  N )  <-> 
( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  /\  E. k  e.  ZZ  ( k  x.  2 )  =  N ) )
95 eqtr3 2492 . . . . . . . 8  |-  ( ( ( ( 2  x.  n )  +  1 )  =  N  /\  ( k  x.  2 )  =  N )  ->  ( ( 2  x.  n )  +  1 )  =  ( k  x.  2 ) )
96 zcn 10966 . . . . . . . . . . . 12  |-  ( k  e.  ZZ  ->  k  e.  CC )
97 mulcom 9643 . . . . . . . . . . . 12  |-  ( ( k  e.  CC  /\  2  e.  CC )  ->  ( k  x.  2 )  =  ( 2  x.  k ) )
9896, 14, 97sylancl 675 . . . . . . . . . . 11  |-  ( k  e.  ZZ  ->  (
k  x.  2 )  =  ( 2  x.  k ) )
9998eqeq2d 2481 . . . . . . . . . 10  |-  ( k  e.  ZZ  ->  (
( ( 2  x.  n )  +  1 )  =  ( k  x.  2 )  <->  ( (
2  x.  n )  +  1 )  =  ( 2  x.  k
) ) )
10099adantl 473 . . . . . . . . 9  |-  ( ( n  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( ( 2  x.  n )  +  1 )  =  ( k  x.  2 )  <-> 
( ( 2  x.  n )  +  1 )  =  ( 2  x.  k ) ) )
101 mulcl 9641 . . . . . . . . . . . 12  |-  ( ( 2  e.  CC  /\  k  e.  CC )  ->  ( 2  x.  k
)  e.  CC )
10214, 96, 101sylancr 676 . . . . . . . . . . 11  |-  ( k  e.  ZZ  ->  (
2  x.  k )  e.  CC )
103 zcn 10966 . . . . . . . . . . . 12  |-  ( n  e.  ZZ  ->  n  e.  CC )
104 mulcl 9641 . . . . . . . . . . . 12  |-  ( ( 2  e.  CC  /\  n  e.  CC )  ->  ( 2  x.  n
)  e.  CC )
10514, 103, 104sylancr 676 . . . . . . . . . . 11  |-  ( n  e.  ZZ  ->  (
2  x.  n )  e.  CC )
106 subadd 9898 . . . . . . . . . . . 12  |-  ( ( ( 2  x.  k
)  e.  CC  /\  ( 2  x.  n
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( 2  x.  k )  -  ( 2  x.  n
) )  =  1  <-> 
( ( 2  x.  n )  +  1 )  =  ( 2  x.  k ) ) )
10727, 106mp3an3 1379 . . . . . . . . . . 11  |-  ( ( ( 2  x.  k
)  e.  CC  /\  ( 2  x.  n
)  e.  CC )  ->  ( ( ( 2  x.  k )  -  ( 2  x.  n ) )  =  1  <->  ( ( 2  x.  n )  +  1 )  =  ( 2  x.  k ) ) )
108102, 105, 107syl2anr 486 . . . . . . . . . 10  |-  ( ( n  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( ( 2  x.  k )  -  ( 2  x.  n
) )  =  1  <-> 
( ( 2  x.  n )  +  1 )  =  ( 2  x.  k ) ) )
109 subcl 9894 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  CC  /\  n  e.  CC )  ->  ( k  -  n
)  e.  CC )
110 2cnne0 10847 . . . . . . . . . . . . . . . 16  |-  ( 2  e.  CC  /\  2  =/=  0 )
111 eqcom 2478 . . . . . . . . . . . . . . . . 17  |-  ( ( k  -  n )  =  ( 1  / 
2 )  <->  ( 1  /  2 )  =  ( k  -  n
) )
112 divmul 10295 . . . . . . . . . . . . . . . . 17  |-  ( ( 1  e.  CC  /\  ( k  -  n
)  e.  CC  /\  ( 2  e.  CC  /\  2  =/=  0 ) )  ->  ( (
1  /  2 )  =  ( k  -  n )  <->  ( 2  x.  ( k  -  n ) )  =  1 ) )
113111, 112syl5bb 265 . . . . . . . . . . . . . . . 16  |-  ( ( 1  e.  CC  /\  ( k  -  n
)  e.  CC  /\  ( 2  e.  CC  /\  2  =/=  0 ) )  ->  ( (
k  -  n )  =  ( 1  / 
2 )  <->  ( 2  x.  ( k  -  n ) )  =  1 ) )
11427, 110, 113mp3an13 1381 . . . . . . . . . . . . . . 15  |-  ( ( k  -  n )  e.  CC  ->  (
( k  -  n
)  =  ( 1  /  2 )  <->  ( 2  x.  ( k  -  n ) )  =  1 ) )
115109, 114syl 17 . . . . . . . . . . . . . 14  |-  ( ( k  e.  CC  /\  n  e.  CC )  ->  ( ( k  -  n )  =  ( 1  /  2 )  <-> 
( 2  x.  (
k  -  n ) )  =  1 ) )
116115ancoms 460 . . . . . . . . . . . . 13  |-  ( ( n  e.  CC  /\  k  e.  CC )  ->  ( ( k  -  n )  =  ( 1  /  2 )  <-> 
( 2  x.  (
k  -  n ) )  =  1 ) )
117 subdi 10073 . . . . . . . . . . . . . . . 16  |-  ( ( 2  e.  CC  /\  k  e.  CC  /\  n  e.  CC )  ->  (
2  x.  ( k  -  n ) )  =  ( ( 2  x.  k )  -  ( 2  x.  n
) ) )
11814, 117mp3an1 1377 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  CC  /\  n  e.  CC )  ->  ( 2  x.  (
k  -  n ) )  =  ( ( 2  x.  k )  -  ( 2  x.  n ) ) )
119118ancoms 460 . . . . . . . . . . . . . 14  |-  ( ( n  e.  CC  /\  k  e.  CC )  ->  ( 2  x.  (
k  -  n ) )  =  ( ( 2  x.  k )  -  ( 2  x.  n ) ) )
120119eqeq1d 2473 . . . . . . . . . . . . 13  |-  ( ( n  e.  CC  /\  k  e.  CC )  ->  ( ( 2  x.  ( k  -  n
) )  =  1  <-> 
( ( 2  x.  k )  -  (
2  x.  n ) )  =  1 ) )
121116, 120bitrd 261 . . . . . . . . . . . 12  |-  ( ( n  e.  CC  /\  k  e.  CC )  ->  ( ( k  -  n )  =  ( 1  /  2 )  <-> 
( ( 2  x.  k )  -  (
2  x.  n ) )  =  1 ) )
122103, 96, 121syl2an 485 . . . . . . . . . . 11  |-  ( ( n  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( k  -  n )  =  ( 1  /  2 )  <-> 
( ( 2  x.  k )  -  (
2  x.  n ) )  =  1 ) )
123 zsubcl 11003 . . . . . . . . . . . . 13  |-  ( ( k  e.  ZZ  /\  n  e.  ZZ )  ->  ( k  -  n
)  e.  ZZ )
124 eleq1 2537 . . . . . . . . . . . . 13  |-  ( ( k  -  n )  =  ( 1  / 
2 )  ->  (
( k  -  n
)  e.  ZZ  <->  ( 1  /  2 )  e.  ZZ ) )
125123, 124syl5ibcom 228 . . . . . . . . . . . 12  |-  ( ( k  e.  ZZ  /\  n  e.  ZZ )  ->  ( ( k  -  n )  =  ( 1  /  2 )  ->  ( 1  / 
2 )  e.  ZZ ) )
126125ancoms 460 . . . . . . . . . . 11  |-  ( ( n  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( k  -  n )  =  ( 1  /  2 )  ->  ( 1  / 
2 )  e.  ZZ ) )
127122, 126sylbird 243 . . . . . . . . . 10  |-  ( ( n  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( ( 2  x.  k )  -  ( 2  x.  n
) )  =  1  ->  ( 1  / 
2 )  e.  ZZ ) )
128108, 127sylbird 243 . . . . . . . . 9  |-  ( ( n  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( ( 2  x.  n )  +  1 )  =  ( 2  x.  k )  ->  ( 1  / 
2 )  e.  ZZ ) )
129100, 128sylbid 223 . . . . . . . 8  |-  ( ( n  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( ( 2  x.  n )  +  1 )  =  ( k  x.  2 )  ->  ( 1  / 
2 )  e.  ZZ ) )
13095, 129syl5 32 . . . . . . 7  |-  ( ( n  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( ( ( 2  x.  n )  +  1 )  =  N  /\  ( k  x.  2 )  =  N )  ->  (
1  /  2 )  e.  ZZ ) )
131130rexlimivv 2876 . . . . . 6  |-  ( E. n  e.  ZZ  E. k  e.  ZZ  (
( ( 2  x.  n )  +  1 )  =  N  /\  ( k  x.  2 )  =  N )  ->  ( 1  / 
2 )  e.  ZZ )
13294, 131sylbir 218 . . . . 5  |-  ( ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  /\  E. k  e.  ZZ  (
k  x.  2 )  =  N )  -> 
( 1  /  2
)  e.  ZZ )
13393, 132mto 181 . . . 4  |-  -.  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  /\  E. k  e.  ZZ  (
k  x.  2 )  =  N )
13492, 133jctir 547 . . 3  |-  ( N  e.  ZZ  ->  (
( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  \/  E. k  e.  ZZ  ( k  x.  2 )  =  N )  /\  -.  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  /\  E. k  e.  ZZ  (
k  x.  2 )  =  N ) ) )
135 pm5.17 905 . . . 4  |-  ( ( ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  \/  E. k  e.  ZZ  ( k  x.  2 )  =  N )  /\  -.  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  /\  E. k  e.  ZZ  (
k  x.  2 )  =  N ) )  <-> 
( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  <->  -.  E. k  e.  ZZ  ( k  x.  2 )  =  N ) )
136 bicom 205 . . . 4  |-  ( ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  <->  -.  E. k  e.  ZZ  ( k  x.  2 )  =  N )  <->  ( -.  E. k  e.  ZZ  (
k  x.  2 )  =  N  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
137135, 136bitri 257 . . 3  |-  ( ( ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  \/  E. k  e.  ZZ  ( k  x.  2 )  =  N )  /\  -.  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  /\  E. k  e.  ZZ  (
k  x.  2 )  =  N ) )  <-> 
( -.  E. k  e.  ZZ  ( k  x.  2 )  =  N  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
138134, 137sylib 201 . 2  |-  ( N  e.  ZZ  ->  ( -.  E. k  e.  ZZ  ( k  x.  2 )  =  N  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
1394, 138bitrd 261 1  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    \/ wo 375    /\ wa 376    /\ w3a 1007    = wceq 1452    e. wcel 1904    =/= wne 2641   E.wrex 2757   class class class wbr 4395  (class class class)co 6308   CCcc 9555   RRcr 9556   0cc0 9557   1c1 9558    + caddc 9560    x. cmul 9562    - cmin 9880   -ucneg 9881    / cdiv 10291   2c2 10681   NN0cn0 10893   ZZcz 10961    || cdvds 14382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-er 7381  df-en 7588  df-dom 7589  df-sdom 7590  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-n0 10894  df-z 10962  df-dvds 14383
This theorem is referenced by:  oddm1even  14444  oexpneg  14446  opoe  14840  omoe  14841  opeo  14842  omeo  14843  iserodd  14864  leibpilem1  23945  lgsquadlem1  24361  coskpi2  37838  cosknegpi  37841  stirlinglem5  38052  fourierswlem  38206  mod2eq1n2dvds  38870  elmod2OLD  38871  dfodd3  38925
  Copyright terms: Public domain W3C validator