MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odd2np1 Structured version   Unicode version

Theorem odd2np1 14358
Description: An integer is odd iff it is one plus twice another integer. (Contributed by Scott Fenton, 3-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
odd2np1  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
Distinct variable group:    n, N

Proof of Theorem odd2np1
Dummy variables  k  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2z 10971 . . . 4  |-  2  e.  ZZ
2 divides 14300 . . . 4  |-  ( ( 2  e.  ZZ  /\  N  e.  ZZ )  ->  ( 2  ||  N  <->  E. k  e.  ZZ  (
k  x.  2 )  =  N ) )
31, 2mpan 675 . . 3  |-  ( N  e.  ZZ  ->  (
2  ||  N  <->  E. k  e.  ZZ  ( k  x.  2 )  =  N ) )
43notbid 296 . 2  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  <->  -.  E. k  e.  ZZ  ( k  x.  2 )  =  N ) )
5 elznn0 10954 . . . . 5  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  e.  NN0  \/  -u N  e.  NN0 ) ) )
6 odd2np1lem 14357 . . . . . . 7  |-  ( N  e.  NN0  ->  ( E. n  e.  ZZ  (
( 2  x.  n
)  +  1 )  =  N  \/  E. k  e.  ZZ  (
k  x.  2 )  =  N ) )
76adantl 468 . . . . . 6  |-  ( ( N  e.  RR  /\  N  e.  NN0 )  -> 
( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  \/  E. k  e.  ZZ  ( k  x.  2 )  =  N ) )
8 odd2np1lem 14357 . . . . . . . 8  |-  ( -u N  e.  NN0  ->  ( E. x  e.  ZZ  ( ( 2  x.  x )  +  1 )  =  -u N  \/  E. y  e.  ZZ  ( y  x.  2 )  =  -u N
) )
9 peano2z 10980 . . . . . . . . . . . . . 14  |-  ( x  e.  ZZ  ->  (
x  +  1 )  e.  ZZ )
10 znegcl 10974 . . . . . . . . . . . . . 14  |-  ( ( x  +  1 )  e.  ZZ  ->  -u (
x  +  1 )  e.  ZZ )
119, 10syl 17 . . . . . . . . . . . . 13  |-  ( x  e.  ZZ  ->  -u (
x  +  1 )  e.  ZZ )
1211ad2antlr 732 . . . . . . . . . . . 12  |-  ( ( ( N  e.  RR  /\  x  e.  ZZ )  /\  ( ( 2  x.  x )  +  1 )  =  -u N )  ->  -u (
x  +  1 )  e.  ZZ )
13 zcn 10944 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ZZ  ->  x  e.  CC )
14 2cn 10682 . . . . . . . . . . . . . . . . . . 19  |-  2  e.  CC
15 mulcl 9625 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2  e.  CC  /\  x  e.  CC )  ->  ( 2  x.  x
)  e.  CC )
1614, 15mpan 675 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  CC  ->  (
2  x.  x )  e.  CC )
17 peano2cn 9807 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2  x.  x )  e.  CC  ->  (
( 2  x.  x
)  +  1 )  e.  CC )
1816, 17syl 17 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  CC  ->  (
( 2  x.  x
)  +  1 )  e.  CC )
1913, 18syl 17 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ZZ  ->  (
( 2  x.  x
)  +  1 )  e.  CC )
2019adantl 468 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  RR  /\  x  e.  ZZ )  ->  ( ( 2  x.  x )  +  1 )  e.  CC )
21 simpl 459 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  RR  /\  x  e.  ZZ )  ->  N  e.  RR )
2221recnd 9671 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  RR  /\  x  e.  ZZ )  ->  N  e.  CC )
23 negcon2 9929 . . . . . . . . . . . . . . 15  |-  ( ( ( ( 2  x.  x )  +  1 )  e.  CC  /\  N  e.  CC )  ->  ( ( ( 2  x.  x )  +  1 )  =  -u N 
<->  N  =  -u (
( 2  x.  x
)  +  1 ) ) )
2420, 22, 23syl2anc 666 . . . . . . . . . . . . . 14  |-  ( ( N  e.  RR  /\  x  e.  ZZ )  ->  ( ( ( 2  x.  x )  +  1 )  =  -u N 
<->  N  =  -u (
( 2  x.  x
)  +  1 ) ) )
25 eqcom 2432 . . . . . . . . . . . . . . 15  |-  ( N  =  -u ( ( 2  x.  x )  +  1 )  <->  -u ( ( 2  x.  x )  +  1 )  =  N )
2614, 13, 15sylancr 668 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  ZZ  ->  (
2  x.  x )  e.  CC )
27 ax-1cn 9599 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  1  e.  CC
2814, 27mulcli 9650 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( 2  x.  1 )  e.  CC
29 addsubass 9887 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( 2  x.  x
)  e.  CC  /\  ( 2  x.  1 )  e.  CC  /\  1  e.  CC )  ->  ( ( ( 2  x.  x )  +  ( 2  x.  1 ) )  -  1 )  =  ( ( 2  x.  x )  +  ( ( 2  x.  1 )  - 
1 ) ) )
3028, 27, 29mp3an23 1353 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 2  x.  x )  e.  CC  ->  (
( ( 2  x.  x )  +  ( 2  x.  1 ) )  -  1 )  =  ( ( 2  x.  x )  +  ( ( 2  x.  1 )  -  1 ) ) )
3126, 30syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  ZZ  ->  (
( ( 2  x.  x )  +  ( 2  x.  1 ) )  -  1 )  =  ( ( 2  x.  x )  +  ( ( 2  x.  1 )  -  1 ) ) )
32 2t1e2 10760 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( 2  x.  1 )  =  2
3332oveq1i 6313 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( 2  x.  1 )  -  1 )  =  ( 2  -  1 )
34 2m1e1 10726 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( 2  -  1 )  =  1
3533, 34eqtri 2452 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 2  x.  1 )  -  1 )  =  1
3635oveq2i 6314 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 2  x.  x )  +  ( ( 2  x.  1 )  - 
1 ) )  =  ( ( 2  x.  x )  +  1 )
3731, 36syl6req 2481 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ZZ  ->  (
( 2  x.  x
)  +  1 )  =  ( ( ( 2  x.  x )  +  ( 2  x.  1 ) )  - 
1 ) )
38 adddi 9630 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( 2  e.  CC  /\  x  e.  CC  /\  1  e.  CC )  ->  (
2  x.  ( x  +  1 ) )  =  ( ( 2  x.  x )  +  ( 2  x.  1 ) ) )
3914, 27, 38mp3an13 1352 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  CC  ->  (
2  x.  ( x  +  1 ) )  =  ( ( 2  x.  x )  +  ( 2  x.  1 ) ) )
4013, 39syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  ZZ  ->  (
2  x.  ( x  +  1 ) )  =  ( ( 2  x.  x )  +  ( 2  x.  1 ) ) )
4140oveq1d 6318 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ZZ  ->  (
( 2  x.  (
x  +  1 ) )  -  1 )  =  ( ( ( 2  x.  x )  +  ( 2  x.  1 ) )  - 
1 ) )
4237, 41eqtr4d 2467 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ZZ  ->  (
( 2  x.  x
)  +  1 )  =  ( ( 2  x.  ( x  + 
1 ) )  - 
1 ) )
4342negeqd 9871 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ZZ  ->  -u (
( 2  x.  x
)  +  1 )  =  -u ( ( 2  x.  ( x  + 
1 ) )  - 
1 ) )
449zcnd 11043 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  ZZ  ->  (
x  +  1 )  e.  CC )
45 mulneg2 10058 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 2  e.  CC  /\  ( x  +  1
)  e.  CC )  ->  ( 2  x.  -u ( x  +  1 ) )  =  -u ( 2  x.  (
x  +  1 ) ) )
4614, 44, 45sylancr 668 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ZZ  ->  (
2  x.  -u (
x  +  1 ) )  =  -u (
2  x.  ( x  +  1 ) ) )
4746oveq1d 6318 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ZZ  ->  (
( 2  x.  -u (
x  +  1 ) )  +  1 )  =  ( -u (
2  x.  ( x  +  1 ) )  +  1 ) )
48 mulcl 9625 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 2  e.  CC  /\  ( x  +  1
)  e.  CC )  ->  ( 2  x.  ( x  +  1 ) )  e.  CC )
4914, 44, 48sylancr 668 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ZZ  ->  (
2  x.  ( x  +  1 ) )  e.  CC )
50 negsubdi 9932 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( 2  x.  (
x  +  1 ) )  e.  CC  /\  1  e.  CC )  -> 
-u ( ( 2  x.  ( x  + 
1 ) )  - 
1 )  =  (
-u ( 2  x.  ( x  +  1 ) )  +  1 ) )
5149, 27, 50sylancl 667 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ZZ  ->  -u (
( 2  x.  (
x  +  1 ) )  -  1 )  =  ( -u (
2  x.  ( x  +  1 ) )  +  1 ) )
5247, 51eqtr4d 2467 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ZZ  ->  (
( 2  x.  -u (
x  +  1 ) )  +  1 )  =  -u ( ( 2  x.  ( x  + 
1 ) )  - 
1 ) )
5343, 52eqtr4d 2467 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ZZ  ->  -u (
( 2  x.  x
)  +  1 )  =  ( ( 2  x.  -u ( x  + 
1 ) )  +  1 ) )
5453adantl 468 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  RR  /\  x  e.  ZZ )  -> 
-u ( ( 2  x.  x )  +  1 )  =  ( ( 2  x.  -u (
x  +  1 ) )  +  1 ) )
5554eqeq1d 2425 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  RR  /\  x  e.  ZZ )  ->  ( -u ( ( 2  x.  x )  +  1 )  =  N  <->  ( ( 2  x.  -u ( x  + 
1 ) )  +  1 )  =  N ) )
5625, 55syl5bb 261 . . . . . . . . . . . . . 14  |-  ( ( N  e.  RR  /\  x  e.  ZZ )  ->  ( N  =  -u ( ( 2  x.  x )  +  1 )  <->  ( ( 2  x.  -u ( x  + 
1 ) )  +  1 )  =  N ) )
5724, 56bitrd 257 . . . . . . . . . . . . 13  |-  ( ( N  e.  RR  /\  x  e.  ZZ )  ->  ( ( ( 2  x.  x )  +  1 )  =  -u N 
<->  ( ( 2  x.  -u ( x  +  1 ) )  +  1 )  =  N ) )
5857biimpa 487 . . . . . . . . . . . 12  |-  ( ( ( N  e.  RR  /\  x  e.  ZZ )  /\  ( ( 2  x.  x )  +  1 )  =  -u N )  ->  (
( 2  x.  -u (
x  +  1 ) )  +  1 )  =  N )
59 oveq2 6311 . . . . . . . . . . . . . . 15  |-  ( n  =  -u ( x  + 
1 )  ->  (
2  x.  n )  =  ( 2  x.  -u ( x  +  1 ) ) )
6059oveq1d 6318 . . . . . . . . . . . . . 14  |-  ( n  =  -u ( x  + 
1 )  ->  (
( 2  x.  n
)  +  1 )  =  ( ( 2  x.  -u ( x  + 
1 ) )  +  1 ) )
6160eqeq1d 2425 . . . . . . . . . . . . 13  |-  ( n  =  -u ( x  + 
1 )  ->  (
( ( 2  x.  n )  +  1 )  =  N  <->  ( (
2  x.  -u (
x  +  1 ) )  +  1 )  =  N ) )
6261rspcev 3183 . . . . . . . . . . . 12  |-  ( (
-u ( x  + 
1 )  e.  ZZ  /\  ( ( 2  x.  -u ( x  +  1 ) )  +  1 )  =  N )  ->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N )
6312, 58, 62syl2anc 666 . . . . . . . . . . 11  |-  ( ( ( N  e.  RR  /\  x  e.  ZZ )  /\  ( ( 2  x.  x )  +  1 )  =  -u N )  ->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N )
6463ex 436 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  x  e.  ZZ )  ->  ( ( ( 2  x.  x )  +  1 )  =  -u N  ->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
6564rexlimdva 2918 . . . . . . . . 9  |-  ( N  e.  RR  ->  ( E. x  e.  ZZ  ( ( 2  x.  x )  +  1 )  =  -u N  ->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
66 znegcl 10974 . . . . . . . . . . . . 13  |-  ( y  e.  ZZ  ->  -u y  e.  ZZ )
6766ad2antlr 732 . . . . . . . . . . . 12  |-  ( ( ( N  e.  RR  /\  y  e.  ZZ )  /\  ( y  x.  2 )  =  -u N )  ->  -u y  e.  ZZ )
68 zcn 10944 . . . . . . . . . . . . . . . 16  |-  ( y  e.  ZZ  ->  y  e.  CC )
69 mulcl 9625 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  CC  /\  2  e.  CC )  ->  ( y  x.  2 )  e.  CC )
7068, 14, 69sylancl 667 . . . . . . . . . . . . . . 15  |-  ( y  e.  ZZ  ->  (
y  x.  2 )  e.  CC )
71 recn 9631 . . . . . . . . . . . . . . 15  |-  ( N  e.  RR  ->  N  e.  CC )
72 negcon2 9929 . . . . . . . . . . . . . . 15  |-  ( ( ( y  x.  2 )  e.  CC  /\  N  e.  CC )  ->  ( ( y  x.  2 )  =  -u N 
<->  N  =  -u (
y  x.  2 ) ) )
7370, 71, 72syl2anr 481 . . . . . . . . . . . . . 14  |-  ( ( N  e.  RR  /\  y  e.  ZZ )  ->  ( ( y  x.  2 )  =  -u N 
<->  N  =  -u (
y  x.  2 ) ) )
74 mulneg1 10057 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  CC  /\  2  e.  CC )  ->  ( -u y  x.  2 )  =  -u ( y  x.  2 ) )
7568, 14, 74sylancl 667 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ZZ  ->  ( -u y  x.  2 )  =  -u ( y  x.  2 ) )
7675adantl 468 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  RR  /\  y  e.  ZZ )  ->  ( -u y  x.  2 )  =  -u ( y  x.  2 ) )
7776eqeq1d 2425 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  RR  /\  y  e.  ZZ )  ->  ( ( -u y  x.  2 )  =  N  <->  -u ( y  x.  2 )  =  N ) )
78 eqcom 2432 . . . . . . . . . . . . . . 15  |-  ( N  =  -u ( y  x.  2 )  <->  -u ( y  x.  2 )  =  N )
7977, 78syl6rbbr 268 . . . . . . . . . . . . . 14  |-  ( ( N  e.  RR  /\  y  e.  ZZ )  ->  ( N  =  -u ( y  x.  2 )  <->  ( -u y  x.  2 )  =  N ) )
8073, 79bitrd 257 . . . . . . . . . . . . 13  |-  ( ( N  e.  RR  /\  y  e.  ZZ )  ->  ( ( y  x.  2 )  =  -u N 
<->  ( -u y  x.  2 )  =  N ) )
8180biimpa 487 . . . . . . . . . . . 12  |-  ( ( ( N  e.  RR  /\  y  e.  ZZ )  /\  ( y  x.  2 )  =  -u N )  ->  ( -u y  x.  2 )  =  N )
82 oveq1 6310 . . . . . . . . . . . . . 14  |-  ( k  =  -u y  ->  (
k  x.  2 )  =  ( -u y  x.  2 ) )
8382eqeq1d 2425 . . . . . . . . . . . . 13  |-  ( k  =  -u y  ->  (
( k  x.  2 )  =  N  <->  ( -u y  x.  2 )  =  N ) )
8483rspcev 3183 . . . . . . . . . . . 12  |-  ( (
-u y  e.  ZZ  /\  ( -u y  x.  2 )  =  N )  ->  E. k  e.  ZZ  ( k  x.  2 )  =  N )
8567, 81, 84syl2anc 666 . . . . . . . . . . 11  |-  ( ( ( N  e.  RR  /\  y  e.  ZZ )  /\  ( y  x.  2 )  =  -u N )  ->  E. k  e.  ZZ  ( k  x.  2 )  =  N )
8685ex 436 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  y  e.  ZZ )  ->  ( ( y  x.  2 )  =  -u N  ->  E. k  e.  ZZ  ( k  x.  2 )  =  N ) )
8786rexlimdva 2918 . . . . . . . . 9  |-  ( N  e.  RR  ->  ( E. y  e.  ZZ  ( y  x.  2 )  =  -u N  ->  E. k  e.  ZZ  ( k  x.  2 )  =  N ) )
8865, 87orim12d 847 . . . . . . . 8  |-  ( N  e.  RR  ->  (
( E. x  e.  ZZ  ( ( 2  x.  x )  +  1 )  =  -u N  \/  E. y  e.  ZZ  ( y  x.  2 )  =  -u N )  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  \/  E. k  e.  ZZ  (
k  x.  2 )  =  N ) ) )
898, 88syl5 34 . . . . . . 7  |-  ( N  e.  RR  ->  ( -u N  e.  NN0  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  \/  E. k  e.  ZZ  (
k  x.  2 )  =  N ) ) )
9089imp 431 . . . . . 6  |-  ( ( N  e.  RR  /\  -u N  e.  NN0 )  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  \/  E. k  e.  ZZ  ( k  x.  2 )  =  N ) )
917, 90jaodan 793 . . . . 5  |-  ( ( N  e.  RR  /\  ( N  e.  NN0  \/  -u N  e.  NN0 ) )  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  \/  E. k  e.  ZZ  (
k  x.  2 )  =  N ) )
925, 91sylbi 199 . . . 4  |-  ( N  e.  ZZ  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  \/  E. k  e.  ZZ  (
k  x.  2 )  =  N ) )
93 halfnz 11016 . . . . 5  |-  -.  (
1  /  2 )  e.  ZZ
94 reeanv 2997 . . . . . 6  |-  ( E. n  e.  ZZ  E. k  e.  ZZ  (
( ( 2  x.  n )  +  1 )  =  N  /\  ( k  x.  2 )  =  N )  <-> 
( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  /\  E. k  e.  ZZ  ( k  x.  2 )  =  N ) )
95 eqtr3 2451 . . . . . . . 8  |-  ( ( ( ( 2  x.  n )  +  1 )  =  N  /\  ( k  x.  2 )  =  N )  ->  ( ( 2  x.  n )  +  1 )  =  ( k  x.  2 ) )
96 zcn 10944 . . . . . . . . . . . 12  |-  ( k  e.  ZZ  ->  k  e.  CC )
97 mulcom 9627 . . . . . . . . . . . 12  |-  ( ( k  e.  CC  /\  2  e.  CC )  ->  ( k  x.  2 )  =  ( 2  x.  k ) )
9896, 14, 97sylancl 667 . . . . . . . . . . 11  |-  ( k  e.  ZZ  ->  (
k  x.  2 )  =  ( 2  x.  k ) )
9998eqeq2d 2437 . . . . . . . . . 10  |-  ( k  e.  ZZ  ->  (
( ( 2  x.  n )  +  1 )  =  ( k  x.  2 )  <->  ( (
2  x.  n )  +  1 )  =  ( 2  x.  k
) ) )
10099adantl 468 . . . . . . . . 9  |-  ( ( n  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( ( 2  x.  n )  +  1 )  =  ( k  x.  2 )  <-> 
( ( 2  x.  n )  +  1 )  =  ( 2  x.  k ) ) )
101 mulcl 9625 . . . . . . . . . . . 12  |-  ( ( 2  e.  CC  /\  k  e.  CC )  ->  ( 2  x.  k
)  e.  CC )
10214, 96, 101sylancr 668 . . . . . . . . . . 11  |-  ( k  e.  ZZ  ->  (
2  x.  k )  e.  CC )
103 zcn 10944 . . . . . . . . . . . 12  |-  ( n  e.  ZZ  ->  n  e.  CC )
104 mulcl 9625 . . . . . . . . . . . 12  |-  ( ( 2  e.  CC  /\  n  e.  CC )  ->  ( 2  x.  n
)  e.  CC )
10514, 103, 104sylancr 668 . . . . . . . . . . 11  |-  ( n  e.  ZZ  ->  (
2  x.  n )  e.  CC )
106 subadd 9880 . . . . . . . . . . . 12  |-  ( ( ( 2  x.  k
)  e.  CC  /\  ( 2  x.  n
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( 2  x.  k )  -  ( 2  x.  n
) )  =  1  <-> 
( ( 2  x.  n )  +  1 )  =  ( 2  x.  k ) ) )
10727, 106mp3an3 1350 . . . . . . . . . . 11  |-  ( ( ( 2  x.  k
)  e.  CC  /\  ( 2  x.  n
)  e.  CC )  ->  ( ( ( 2  x.  k )  -  ( 2  x.  n ) )  =  1  <->  ( ( 2  x.  n )  +  1 )  =  ( 2  x.  k ) ) )
108102, 105, 107syl2anr 481 . . . . . . . . . 10  |-  ( ( n  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( ( 2  x.  k )  -  ( 2  x.  n
) )  =  1  <-> 
( ( 2  x.  n )  +  1 )  =  ( 2  x.  k ) ) )
109 subcl 9876 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  CC  /\  n  e.  CC )  ->  ( k  -  n
)  e.  CC )
110 2cnne0 10826 . . . . . . . . . . . . . . . 16  |-  ( 2  e.  CC  /\  2  =/=  0 )
111 eqcom 2432 . . . . . . . . . . . . . . . . 17  |-  ( ( k  -  n )  =  ( 1  / 
2 )  <->  ( 1  /  2 )  =  ( k  -  n
) )
112 divmul 10275 . . . . . . . . . . . . . . . . 17  |-  ( ( 1  e.  CC  /\  ( k  -  n
)  e.  CC  /\  ( 2  e.  CC  /\  2  =/=  0 ) )  ->  ( (
1  /  2 )  =  ( k  -  n )  <->  ( 2  x.  ( k  -  n ) )  =  1 ) )
113111, 112syl5bb 261 . . . . . . . . . . . . . . . 16  |-  ( ( 1  e.  CC  /\  ( k  -  n
)  e.  CC  /\  ( 2  e.  CC  /\  2  =/=  0 ) )  ->  ( (
k  -  n )  =  ( 1  / 
2 )  <->  ( 2  x.  ( k  -  n ) )  =  1 ) )
11427, 110, 113mp3an13 1352 . . . . . . . . . . . . . . 15  |-  ( ( k  -  n )  e.  CC  ->  (
( k  -  n
)  =  ( 1  /  2 )  <->  ( 2  x.  ( k  -  n ) )  =  1 ) )
115109, 114syl 17 . . . . . . . . . . . . . 14  |-  ( ( k  e.  CC  /\  n  e.  CC )  ->  ( ( k  -  n )  =  ( 1  /  2 )  <-> 
( 2  x.  (
k  -  n ) )  =  1 ) )
116115ancoms 455 . . . . . . . . . . . . 13  |-  ( ( n  e.  CC  /\  k  e.  CC )  ->  ( ( k  -  n )  =  ( 1  /  2 )  <-> 
( 2  x.  (
k  -  n ) )  =  1 ) )
117 subdi 10054 . . . . . . . . . . . . . . . 16  |-  ( ( 2  e.  CC  /\  k  e.  CC  /\  n  e.  CC )  ->  (
2  x.  ( k  -  n ) )  =  ( ( 2  x.  k )  -  ( 2  x.  n
) ) )
11814, 117mp3an1 1348 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  CC  /\  n  e.  CC )  ->  ( 2  x.  (
k  -  n ) )  =  ( ( 2  x.  k )  -  ( 2  x.  n ) ) )
119118ancoms 455 . . . . . . . . . . . . . 14  |-  ( ( n  e.  CC  /\  k  e.  CC )  ->  ( 2  x.  (
k  -  n ) )  =  ( ( 2  x.  k )  -  ( 2  x.  n ) ) )
120119eqeq1d 2425 . . . . . . . . . . . . 13  |-  ( ( n  e.  CC  /\  k  e.  CC )  ->  ( ( 2  x.  ( k  -  n
) )  =  1  <-> 
( ( 2  x.  k )  -  (
2  x.  n ) )  =  1 ) )
121116, 120bitrd 257 . . . . . . . . . . . 12  |-  ( ( n  e.  CC  /\  k  e.  CC )  ->  ( ( k  -  n )  =  ( 1  /  2 )  <-> 
( ( 2  x.  k )  -  (
2  x.  n ) )  =  1 ) )
122103, 96, 121syl2an 480 . . . . . . . . . . 11  |-  ( ( n  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( k  -  n )  =  ( 1  /  2 )  <-> 
( ( 2  x.  k )  -  (
2  x.  n ) )  =  1 ) )
123 zsubcl 10981 . . . . . . . . . . . . 13  |-  ( ( k  e.  ZZ  /\  n  e.  ZZ )  ->  ( k  -  n
)  e.  ZZ )
124 eleq1 2495 . . . . . . . . . . . . 13  |-  ( ( k  -  n )  =  ( 1  / 
2 )  ->  (
( k  -  n
)  e.  ZZ  <->  ( 1  /  2 )  e.  ZZ ) )
125123, 124syl5ibcom 224 . . . . . . . . . . . 12  |-  ( ( k  e.  ZZ  /\  n  e.  ZZ )  ->  ( ( k  -  n )  =  ( 1  /  2 )  ->  ( 1  / 
2 )  e.  ZZ ) )
126125ancoms 455 . . . . . . . . . . 11  |-  ( ( n  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( k  -  n )  =  ( 1  /  2 )  ->  ( 1  / 
2 )  e.  ZZ ) )
127122, 126sylbird 239 . . . . . . . . . 10  |-  ( ( n  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( ( 2  x.  k )  -  ( 2  x.  n
) )  =  1  ->  ( 1  / 
2 )  e.  ZZ ) )
128108, 127sylbird 239 . . . . . . . . 9  |-  ( ( n  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( ( 2  x.  n )  +  1 )  =  ( 2  x.  k )  ->  ( 1  / 
2 )  e.  ZZ ) )
129100, 128sylbid 219 . . . . . . . 8  |-  ( ( n  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( ( 2  x.  n )  +  1 )  =  ( k  x.  2 )  ->  ( 1  / 
2 )  e.  ZZ ) )
13095, 129syl5 34 . . . . . . 7  |-  ( ( n  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( ( ( 2  x.  n )  +  1 )  =  N  /\  ( k  x.  2 )  =  N )  ->  (
1  /  2 )  e.  ZZ ) )
131130rexlimivv 2923 . . . . . 6  |-  ( E. n  e.  ZZ  E. k  e.  ZZ  (
( ( 2  x.  n )  +  1 )  =  N  /\  ( k  x.  2 )  =  N )  ->  ( 1  / 
2 )  e.  ZZ )
13294, 131sylbir 217 . . . . 5  |-  ( ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  /\  E. k  e.  ZZ  (
k  x.  2 )  =  N )  -> 
( 1  /  2
)  e.  ZZ )
13393, 132mto 180 . . . 4  |-  -.  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  /\  E. k  e.  ZZ  (
k  x.  2 )  =  N )
13492, 133jctir 541 . . 3  |-  ( N  e.  ZZ  ->  (
( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  \/  E. k  e.  ZZ  ( k  x.  2 )  =  N )  /\  -.  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  /\  E. k  e.  ZZ  (
k  x.  2 )  =  N ) ) )
135 pm5.17 897 . . . 4  |-  ( ( ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  \/  E. k  e.  ZZ  ( k  x.  2 )  =  N )  /\  -.  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  /\  E. k  e.  ZZ  (
k  x.  2 )  =  N ) )  <-> 
( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  <->  -.  E. k  e.  ZZ  ( k  x.  2 )  =  N ) )
136 bicom 204 . . . 4  |-  ( ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  <->  -.  E. k  e.  ZZ  ( k  x.  2 )  =  N )  <->  ( -.  E. k  e.  ZZ  (
k  x.  2 )  =  N  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
137135, 136bitri 253 . . 3  |-  ( ( ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  \/  E. k  e.  ZZ  ( k  x.  2 )  =  N )  /\  -.  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  /\  E. k  e.  ZZ  (
k  x.  2 )  =  N ) )  <-> 
( -.  E. k  e.  ZZ  ( k  x.  2 )  =  N  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
138134, 137sylib 200 . 2  |-  ( N  e.  ZZ  ->  ( -.  E. k  e.  ZZ  ( k  x.  2 )  =  N  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
1394, 138bitrd 257 1  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    \/ wo 370    /\ wa 371    /\ w3a 983    = wceq 1438    e. wcel 1869    =/= wne 2619   E.wrex 2777   class class class wbr 4421  (class class class)co 6303   CCcc 9539   RRcr 9540   0cc0 9541   1c1 9542    + caddc 9544    x. cmul 9546    - cmin 9862   -ucneg 9863    / cdiv 10271   2c2 10661   NN0cn0 10871   ZZcz 10939    || cdvds 14298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-8 1871  ax-9 1873  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401  ax-sep 4544  ax-nul 4553  ax-pow 4600  ax-pr 4658  ax-un 6595  ax-resscn 9598  ax-1cn 9599  ax-icn 9600  ax-addcl 9601  ax-addrcl 9602  ax-mulcl 9603  ax-mulrcl 9604  ax-mulcom 9605  ax-addass 9606  ax-mulass 9607  ax-distr 9608  ax-i2m1 9609  ax-1ne0 9610  ax-1rid 9611  ax-rnegex 9612  ax-rrecex 9613  ax-cnre 9614  ax-pre-lttri 9615  ax-pre-lttrn 9616  ax-pre-ltadd 9617  ax-pre-mulgt0 9618
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 984  df-3an 985  df-tru 1441  df-ex 1661  df-nf 1665  df-sb 1788  df-eu 2270  df-mo 2271  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-nel 2622  df-ral 2781  df-rex 2782  df-reu 2783  df-rmo 2784  df-rab 2785  df-v 3084  df-sbc 3301  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3763  df-if 3911  df-pw 3982  df-sn 3998  df-pr 4000  df-tp 4002  df-op 4004  df-uni 4218  df-iun 4299  df-br 4422  df-opab 4481  df-mpt 4482  df-tr 4517  df-eprel 4762  df-id 4766  df-po 4772  df-so 4773  df-fr 4810  df-we 4812  df-xp 4857  df-rel 4858  df-cnv 4859  df-co 4860  df-dm 4861  df-rn 4862  df-res 4863  df-ima 4864  df-pred 5397  df-ord 5443  df-on 5444  df-lim 5445  df-suc 5446  df-iota 5563  df-fun 5601  df-fn 5602  df-f 5603  df-f1 5604  df-fo 5605  df-f1o 5606  df-fv 5607  df-riota 6265  df-ov 6306  df-oprab 6307  df-mpt2 6308  df-om 6705  df-wrecs 7034  df-recs 7096  df-rdg 7134  df-er 7369  df-en 7576  df-dom 7577  df-sdom 7578  df-pnf 9679  df-mnf 9680  df-xr 9681  df-ltxr 9682  df-le 9683  df-sub 9864  df-neg 9865  df-div 10272  df-nn 10612  df-2 10670  df-n0 10872  df-z 10940  df-dvds 14299
This theorem is referenced by:  oddm1even  14359  oexpneg  14361  opoe  14754  omoe  14755  opeo  14756  omeo  14757  iserodd  14778  leibpilem1  23858  lgsquadlem1  24274  coskpi2  37567  cosknegpi  37570  stirlinglem5  37766  fourierswlem  37920  mod2eq1n2dvds  38443  elmod2OLD  38444  dfodd3  38498
  Copyright terms: Public domain W3C validator