MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odadd2 Structured version   Unicode version

Theorem odadd2 17426
Description: The order of a product in an abelian group is divisible by the LCM of the orders of the factors divided by the GCD. (Contributed by Mario Carneiro, 20-Oct-2015.)
Hypotheses
Ref Expression
odadd1.1  |-  O  =  ( od `  G
)
odadd1.2  |-  X  =  ( Base `  G
)
odadd1.3  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
odadd2  |-  ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  ->  (
( O `  A
)  x.  ( O `
 B ) ) 
||  ( ( O `
 ( A  .+  B ) )  x.  ( ( ( O `
 A )  gcd  ( O `  B
) ) ^ 2 ) ) )

Proof of Theorem odadd2
StepHypRef Expression
1 odadd1.2 . . . . . . . . 9  |-  X  =  ( Base `  G
)
2 odadd1.1 . . . . . . . . 9  |-  O  =  ( od `  G
)
31, 2odcl 17131 . . . . . . . 8  |-  ( A  e.  X  ->  ( O `  A )  e.  NN0 )
433ad2ant2 1027 . . . . . . 7  |-  ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  ->  ( O `  A )  e.  NN0 )
54nn0zd 11038 . . . . . 6  |-  ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  ->  ( O `  A )  e.  ZZ )
61, 2odcl 17131 . . . . . . . 8  |-  ( B  e.  X  ->  ( O `  B )  e.  NN0 )
763ad2ant3 1028 . . . . . . 7  |-  ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  ->  ( O `  B )  e.  NN0 )
87nn0zd 11038 . . . . . 6  |-  ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  ->  ( O `  B )  e.  ZZ )
95, 8zmulcld 11046 . . . . 5  |-  ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  ->  (
( O `  A
)  x.  ( O `
 B ) )  e.  ZZ )
109adantr 466 . . . 4  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =  0 )  ->  ( ( O `
 A )  x.  ( O `  B
) )  e.  ZZ )
11 dvds0 14296 . . . 4  |-  ( ( ( O `  A
)  x.  ( O `
 B ) )  e.  ZZ  ->  (
( O `  A
)  x.  ( O `
 B ) ) 
||  0 )
1210, 11syl 17 . . 3  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =  0 )  ->  ( ( O `
 A )  x.  ( O `  B
) )  ||  0
)
13 simpr 462 . . . . . 6  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =  0 )  ->  ( ( O `
 A )  gcd  ( O `  B
) )  =  0 )
1413sq0id 12365 . . . . 5  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =  0 )  ->  ( ( ( O `  A )  gcd  ( O `  B ) ) ^
2 )  =  0 )
1514oveq2d 6321 . . . 4  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =  0 )  ->  ( ( O `
 ( A  .+  B ) )  x.  ( ( ( O `
 A )  gcd  ( O `  B
) ) ^ 2 ) )  =  ( ( O `  ( A  .+  B ) )  x.  0 ) )
16 ablgrp 17374 . . . . . . . . . 10  |-  ( G  e.  Abel  ->  G  e. 
Grp )
17 odadd1.3 . . . . . . . . . . 11  |-  .+  =  ( +g  `  G )
181, 17grpcl 16634 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  B  e.  X )  ->  ( A  .+  B
)  e.  X )
1916, 18syl3an1 1297 . . . . . . . . 9  |-  ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  ->  ( A  .+  B )  e.  X )
201, 2odcl 17131 . . . . . . . . 9  |-  ( ( A  .+  B )  e.  X  ->  ( O `  ( A  .+  B ) )  e. 
NN0 )
2119, 20syl 17 . . . . . . . 8  |-  ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  ->  ( O `  ( A  .+  B ) )  e. 
NN0 )
2221nn0zd 11038 . . . . . . 7  |-  ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  ->  ( O `  ( A  .+  B ) )  e.  ZZ )
2322adantr 466 . . . . . 6  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =  0 )  ->  ( O `  ( A  .+  B ) )  e.  ZZ )
2423zcnd 11041 . . . . 5  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =  0 )  ->  ( O `  ( A  .+  B ) )  e.  CC )
2524mul01d 9831 . . . 4  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =  0 )  ->  ( ( O `
 ( A  .+  B ) )  x.  0 )  =  0 )
2615, 25eqtrd 2470 . . 3  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =  0 )  ->  ( ( O `
 ( A  .+  B ) )  x.  ( ( ( O `
 A )  gcd  ( O `  B
) ) ^ 2 ) )  =  0 )
2712, 26breqtrrd 4452 . 2  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =  0 )  ->  ( ( O `
 A )  x.  ( O `  B
) )  ||  (
( O `  ( A  .+  B ) )  x.  ( ( ( O `  A )  gcd  ( O `  B ) ) ^
2 ) ) )
285adantr 466 . . . . . . . 8  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( O `  A )  e.  ZZ )
298adantr 466 . . . . . . . 8  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( O `  B )  e.  ZZ )
3028, 29gcdcld 14456 . . . . . . 7  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( O `
 A )  gcd  ( O `  B
) )  e.  NN0 )
3130nn0cnd 10927 . . . . . 6  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( O `
 A )  gcd  ( O `  B
) )  e.  CC )
3231sqvald 12410 . . . . 5  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( O `  A )  gcd  ( O `  B ) ) ^
2 )  =  ( ( ( O `  A )  gcd  ( O `  B )
)  x.  ( ( O `  A )  gcd  ( O `  B ) ) ) )
3332oveq2d 6321 . . . 4  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( ( O `  A
)  /  ( ( O `  A )  gcd  ( O `  B ) ) )  x.  ( ( O `
 B )  / 
( ( O `  A )  gcd  ( O `  B )
) ) )  x.  ( ( ( O `
 A )  gcd  ( O `  B
) ) ^ 2 ) )  =  ( ( ( ( O `
 A )  / 
( ( O `  A )  gcd  ( O `  B )
) )  x.  (
( O `  B
)  /  ( ( O `  A )  gcd  ( O `  B ) ) ) )  x.  ( ( ( O `  A
)  gcd  ( O `  B ) )  x.  ( ( O `  A )  gcd  ( O `  B )
) ) ) )
34 gcddvds 14451 . . . . . . . . 9  |-  ( ( ( O `  A
)  e.  ZZ  /\  ( O `  B )  e.  ZZ )  -> 
( ( ( O `
 A )  gcd  ( O `  B
) )  ||  ( O `  A )  /\  ( ( O `  A )  gcd  ( O `  B )
)  ||  ( O `  B ) ) )
3528, 29, 34syl2anc 665 . . . . . . . 8  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( O `  A )  gcd  ( O `  B ) )  ||  ( O `  A )  /\  ( ( O `
 A )  gcd  ( O `  B
) )  ||  ( O `  B )
) )
3635simpld 460 . . . . . . 7  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( O `
 A )  gcd  ( O `  B
) )  ||  ( O `  A )
)
3730nn0zd 11038 . . . . . . . 8  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( O `
 A )  gcd  ( O `  B
) )  e.  ZZ )
38 simpr 462 . . . . . . . 8  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( O `
 A )  gcd  ( O `  B
) )  =/=  0
)
39 dvdsval2 14286 . . . . . . . 8  |-  ( ( ( ( O `  A )  gcd  ( O `  B )
)  e.  ZZ  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0  /\  ( O `  A
)  e.  ZZ )  ->  ( ( ( O `  A )  gcd  ( O `  B ) )  ||  ( O `  A )  <-> 
( ( O `  A )  /  (
( O `  A
)  gcd  ( O `  B ) ) )  e.  ZZ ) )
4037, 38, 28, 39syl3anc 1264 . . . . . . 7  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( O `  A )  gcd  ( O `  B ) )  ||  ( O `  A )  <-> 
( ( O `  A )  /  (
( O `  A
)  gcd  ( O `  B ) ) )  e.  ZZ ) )
4136, 40mpbid 213 . . . . . 6  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( O `
 A )  / 
( ( O `  A )  gcd  ( O `  B )
) )  e.  ZZ )
4241zcnd 11041 . . . . 5  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( O `
 A )  / 
( ( O `  A )  gcd  ( O `  B )
) )  e.  CC )
4335simprd 464 . . . . . . 7  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( O `
 A )  gcd  ( O `  B
) )  ||  ( O `  B )
)
44 dvdsval2 14286 . . . . . . . 8  |-  ( ( ( ( O `  A )  gcd  ( O `  B )
)  e.  ZZ  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0  /\  ( O `  B
)  e.  ZZ )  ->  ( ( ( O `  A )  gcd  ( O `  B ) )  ||  ( O `  B )  <-> 
( ( O `  B )  /  (
( O `  A
)  gcd  ( O `  B ) ) )  e.  ZZ ) )
4537, 38, 29, 44syl3anc 1264 . . . . . . 7  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( O `  A )  gcd  ( O `  B ) )  ||  ( O `  B )  <-> 
( ( O `  B )  /  (
( O `  A
)  gcd  ( O `  B ) ) )  e.  ZZ ) )
4643, 45mpbid 213 . . . . . 6  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( O `
 B )  / 
( ( O `  A )  gcd  ( O `  B )
) )  e.  ZZ )
4746zcnd 11041 . . . . 5  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( O `
 B )  / 
( ( O `  A )  gcd  ( O `  B )
) )  e.  CC )
4842, 31, 47, 31mul4d 9844 . . . 4  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( ( O `  A
)  /  ( ( O `  A )  gcd  ( O `  B ) ) )  x.  ( ( O `
 A )  gcd  ( O `  B
) ) )  x.  ( ( ( O `
 B )  / 
( ( O `  A )  gcd  ( O `  B )
) )  x.  (
( O `  A
)  gcd  ( O `  B ) ) ) )  =  ( ( ( ( O `  A )  /  (
( O `  A
)  gcd  ( O `  B ) ) )  x.  ( ( O `
 B )  / 
( ( O `  A )  gcd  ( O `  B )
) ) )  x.  ( ( ( O `
 A )  gcd  ( O `  B
) )  x.  (
( O `  A
)  gcd  ( O `  B ) ) ) ) )
4928zcnd 11041 . . . . . 6  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( O `  A )  e.  CC )
5049, 31, 38divcan1d 10383 . . . . 5  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( O `  A )  /  ( ( O `
 A )  gcd  ( O `  B
) ) )  x.  ( ( O `  A )  gcd  ( O `  B )
) )  =  ( O `  A ) )
5129zcnd 11041 . . . . . 6  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( O `  B )  e.  CC )
5251, 31, 38divcan1d 10383 . . . . 5  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( O `  B )  /  ( ( O `
 A )  gcd  ( O `  B
) ) )  x.  ( ( O `  A )  gcd  ( O `  B )
) )  =  ( O `  B ) )
5350, 52oveq12d 6323 . . . 4  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( ( O `  A
)  /  ( ( O `  A )  gcd  ( O `  B ) ) )  x.  ( ( O `
 A )  gcd  ( O `  B
) ) )  x.  ( ( ( O `
 B )  / 
( ( O `  A )  gcd  ( O `  B )
) )  x.  (
( O `  A
)  gcd  ( O `  B ) ) ) )  =  ( ( O `  A )  x.  ( O `  B ) ) )
5433, 48, 533eqtr2d 2476 . . 3  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( ( O `  A
)  /  ( ( O `  A )  gcd  ( O `  B ) ) )  x.  ( ( O `
 B )  / 
( ( O `  A )  gcd  ( O `  B )
) ) )  x.  ( ( ( O `
 A )  gcd  ( O `  B
) ) ^ 2 ) )  =  ( ( O `  A
)  x.  ( O `
 B ) ) )
5522adantr 466 . . . . . . . . . 10  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( O `  ( A  .+  B ) )  e.  ZZ )
56 dvdsmul2 14303 . . . . . . . . . 10  |-  ( ( ( O `  ( A  .+  B ) )  e.  ZZ  /\  ( O `  A )  e.  ZZ )  ->  ( O `  A )  ||  ( ( O `  ( A  .+  B ) )  x.  ( O `
 A ) ) )
5755, 28, 56syl2anc 665 . . . . . . . . 9  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( O `  A )  ||  (
( O `  ( A  .+  B ) )  x.  ( O `  A ) ) )
58 simpl1 1008 . . . . . . . . . . . . 13  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  G  e.  Abel )
5955, 29zmulcld 11046 . . . . . . . . . . . . 13  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( O `
 ( A  .+  B ) )  x.  ( O `  B
) )  e.  ZZ )
60 simpl2 1009 . . . . . . . . . . . . 13  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  A  e.  X
)
61 simpl3 1010 . . . . . . . . . . . . 13  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  B  e.  X
)
62 eqid 2429 . . . . . . . . . . . . . 14  |-  (.g `  G
)  =  (.g `  G
)
631, 62, 17mulgdi 17406 . . . . . . . . . . . . 13  |-  ( ( G  e.  Abel  /\  (
( ( O `  ( A  .+  B ) )  x.  ( O `
 B ) )  e.  ZZ  /\  A  e.  X  /\  B  e.  X ) )  -> 
( ( ( O `
 ( A  .+  B ) )  x.  ( O `  B
) ) (.g `  G
) ( A  .+  B ) )  =  ( ( ( ( O `  ( A 
.+  B ) )  x.  ( O `  B ) ) (.g `  G ) A ) 
.+  ( ( ( O `  ( A 
.+  B ) )  x.  ( O `  B ) ) (.g `  G ) B ) ) )
6458, 59, 60, 61, 63syl13anc 1266 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( O `  ( A 
.+  B ) )  x.  ( O `  B ) ) (.g `  G ) ( A 
.+  B ) )  =  ( ( ( ( O `  ( A  .+  B ) )  x.  ( O `  B ) ) (.g `  G ) A ) 
.+  ( ( ( O `  ( A 
.+  B ) )  x.  ( O `  B ) ) (.g `  G ) B ) ) )
65 dvdsmul2 14303 . . . . . . . . . . . . . . 15  |-  ( ( ( O `  ( A  .+  B ) )  e.  ZZ  /\  ( O `  B )  e.  ZZ )  ->  ( O `  B )  ||  ( ( O `  ( A  .+  B ) )  x.  ( O `
 B ) ) )
6655, 29, 65syl2anc 665 . . . . . . . . . . . . . 14  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( O `  B )  ||  (
( O `  ( A  .+  B ) )  x.  ( O `  B ) ) )
6758, 16syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  G  e.  Grp )
68 eqid 2429 . . . . . . . . . . . . . . . 16  |-  ( 0g
`  G )  =  ( 0g `  G
)
691, 2, 62, 68oddvds 17142 . . . . . . . . . . . . . . 15  |-  ( ( G  e.  Grp  /\  B  e.  X  /\  ( ( O `  ( A  .+  B ) )  x.  ( O `
 B ) )  e.  ZZ )  -> 
( ( O `  B )  ||  (
( O `  ( A  .+  B ) )  x.  ( O `  B ) )  <->  ( (
( O `  ( A  .+  B ) )  x.  ( O `  B ) ) (.g `  G ) B )  =  ( 0g `  G ) ) )
7067, 61, 59, 69syl3anc 1264 . . . . . . . . . . . . . 14  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( O `
 B )  ||  ( ( O `  ( A  .+  B ) )  x.  ( O `
 B ) )  <-> 
( ( ( O `
 ( A  .+  B ) )  x.  ( O `  B
) ) (.g `  G
) B )  =  ( 0g `  G
) ) )
7166, 70mpbid 213 . . . . . . . . . . . . 13  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( O `  ( A 
.+  B ) )  x.  ( O `  B ) ) (.g `  G ) B )  =  ( 0g `  G ) )
7271oveq2d 6321 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( ( O `  ( A  .+  B ) )  x.  ( O `  B ) ) (.g `  G ) A ) 
.+  ( ( ( O `  ( A 
.+  B ) )  x.  ( O `  B ) ) (.g `  G ) B ) )  =  ( ( ( ( O `  ( A  .+  B ) )  x.  ( O `
 B ) ) (.g `  G ) A )  .+  ( 0g
`  G ) ) )
7364, 72eqtrd 2470 . . . . . . . . . . 11  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( O `  ( A 
.+  B ) )  x.  ( O `  B ) ) (.g `  G ) ( A 
.+  B ) )  =  ( ( ( ( O `  ( A  .+  B ) )  x.  ( O `  B ) ) (.g `  G ) A ) 
.+  ( 0g `  G ) ) )
74 dvdsmul1 14302 . . . . . . . . . . . . 13  |-  ( ( ( O `  ( A  .+  B ) )  e.  ZZ  /\  ( O `  B )  e.  ZZ )  ->  ( O `  ( A  .+  B ) )  ||  ( ( O `  ( A  .+  B ) )  x.  ( O `
 B ) ) )
7555, 29, 74syl2anc 665 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( O `  ( A  .+  B ) )  ||  ( ( O `  ( A 
.+  B ) )  x.  ( O `  B ) ) )
7619adantr 466 . . . . . . . . . . . . 13  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( A  .+  B )  e.  X
)
771, 2, 62, 68oddvds 17142 . . . . . . . . . . . . 13  |-  ( ( G  e.  Grp  /\  ( A  .+  B )  e.  X  /\  (
( O `  ( A  .+  B ) )  x.  ( O `  B ) )  e.  ZZ )  ->  (
( O `  ( A  .+  B ) ) 
||  ( ( O `
 ( A  .+  B ) )  x.  ( O `  B
) )  <->  ( (
( O `  ( A  .+  B ) )  x.  ( O `  B ) ) (.g `  G ) ( A 
.+  B ) )  =  ( 0g `  G ) ) )
7867, 76, 59, 77syl3anc 1264 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( O `
 ( A  .+  B ) )  ||  ( ( O `  ( A  .+  B ) )  x.  ( O `
 B ) )  <-> 
( ( ( O `
 ( A  .+  B ) )  x.  ( O `  B
) ) (.g `  G
) ( A  .+  B ) )  =  ( 0g `  G
) ) )
7975, 78mpbid 213 . . . . . . . . . . 11  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( O `  ( A 
.+  B ) )  x.  ( O `  B ) ) (.g `  G ) ( A 
.+  B ) )  =  ( 0g `  G ) )
801, 62mulgcl 16730 . . . . . . . . . . . . 13  |-  ( ( G  e.  Grp  /\  ( ( O `  ( A  .+  B ) )  x.  ( O `
 B ) )  e.  ZZ  /\  A  e.  X )  ->  (
( ( O `  ( A  .+  B ) )  x.  ( O `
 B ) ) (.g `  G ) A )  e.  X )
8167, 59, 60, 80syl3anc 1264 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( O `  ( A 
.+  B ) )  x.  ( O `  B ) ) (.g `  G ) A )  e.  X )
821, 17, 68grprid 16652 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  ( ( ( O `
 ( A  .+  B ) )  x.  ( O `  B
) ) (.g `  G
) A )  e.  X )  ->  (
( ( ( O `
 ( A  .+  B ) )  x.  ( O `  B
) ) (.g `  G
) A )  .+  ( 0g `  G ) )  =  ( ( ( O `  ( A  .+  B ) )  x.  ( O `  B ) ) (.g `  G ) A ) )
8367, 81, 82syl2anc 665 . . . . . . . . . . 11  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( ( O `  ( A  .+  B ) )  x.  ( O `  B ) ) (.g `  G ) A ) 
.+  ( 0g `  G ) )  =  ( ( ( O `
 ( A  .+  B ) )  x.  ( O `  B
) ) (.g `  G
) A ) )
8473, 79, 833eqtr3rd 2479 . . . . . . . . . 10  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( O `  ( A 
.+  B ) )  x.  ( O `  B ) ) (.g `  G ) A )  =  ( 0g `  G ) )
851, 2, 62, 68oddvds 17142 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( ( O `  ( A  .+  B ) )  x.  ( O `
 B ) )  e.  ZZ )  -> 
( ( O `  A )  ||  (
( O `  ( A  .+  B ) )  x.  ( O `  B ) )  <->  ( (
( O `  ( A  .+  B ) )  x.  ( O `  B ) ) (.g `  G ) A )  =  ( 0g `  G ) ) )
8667, 60, 59, 85syl3anc 1264 . . . . . . . . . 10  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( O `
 A )  ||  ( ( O `  ( A  .+  B ) )  x.  ( O `
 B ) )  <-> 
( ( ( O `
 ( A  .+  B ) )  x.  ( O `  B
) ) (.g `  G
) A )  =  ( 0g `  G
) ) )
8784, 86mpbird 235 . . . . . . . . 9  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( O `  A )  ||  (
( O `  ( A  .+  B ) )  x.  ( O `  B ) ) )
8855, 28zmulcld 11046 . . . . . . . . . 10  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( O `
 ( A  .+  B ) )  x.  ( O `  A
) )  e.  ZZ )
89 dvdsgcd 14482 . . . . . . . . . 10  |-  ( ( ( O `  A
)  e.  ZZ  /\  ( ( O `  ( A  .+  B ) )  x.  ( O `
 A ) )  e.  ZZ  /\  (
( O `  ( A  .+  B ) )  x.  ( O `  B ) )  e.  ZZ )  ->  (
( ( O `  A )  ||  (
( O `  ( A  .+  B ) )  x.  ( O `  A ) )  /\  ( O `  A ) 
||  ( ( O `
 ( A  .+  B ) )  x.  ( O `  B
) ) )  -> 
( O `  A
)  ||  ( (
( O `  ( A  .+  B ) )  x.  ( O `  A ) )  gcd  ( ( O `  ( A  .+  B ) )  x.  ( O `
 B ) ) ) ) )
9028, 88, 59, 89syl3anc 1264 . . . . . . . . 9  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( O `  A ) 
||  ( ( O `
 ( A  .+  B ) )  x.  ( O `  A
) )  /\  ( O `  A )  ||  ( ( O `  ( A  .+  B ) )  x.  ( O `
 B ) ) )  ->  ( O `  A )  ||  (
( ( O `  ( A  .+  B ) )  x.  ( O `
 A ) )  gcd  ( ( O `
 ( A  .+  B ) )  x.  ( O `  B
) ) ) ) )
9157, 87, 90mp2and 683 . . . . . . . 8  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( O `  A )  ||  (
( ( O `  ( A  .+  B ) )  x.  ( O `
 A ) )  gcd  ( ( O `
 ( A  .+  B ) )  x.  ( O `  B
) ) ) )
9221adantr 466 . . . . . . . . 9  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( O `  ( A  .+  B ) )  e.  NN0 )
93 mulgcd 14485 . . . . . . . . 9  |-  ( ( ( O `  ( A  .+  B ) )  e.  NN0  /\  ( O `  A )  e.  ZZ  /\  ( O `
 B )  e.  ZZ )  ->  (
( ( O `  ( A  .+  B ) )  x.  ( O `
 A ) )  gcd  ( ( O `
 ( A  .+  B ) )  x.  ( O `  B
) ) )  =  ( ( O `  ( A  .+  B ) )  x.  ( ( O `  A )  gcd  ( O `  B ) ) ) )
9492, 28, 29, 93syl3anc 1264 . . . . . . . 8  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( O `  ( A 
.+  B ) )  x.  ( O `  A ) )  gcd  ( ( O `  ( A  .+  B ) )  x.  ( O `
 B ) ) )  =  ( ( O `  ( A 
.+  B ) )  x.  ( ( O `
 A )  gcd  ( O `  B
) ) ) )
9591, 94breqtrd 4450 . . . . . . 7  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( O `  A )  ||  (
( O `  ( A  .+  B ) )  x.  ( ( O `
 A )  gcd  ( O `  B
) ) ) )
9650, 95eqbrtrd 4446 . . . . . 6  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( O `  A )  /  ( ( O `
 A )  gcd  ( O `  B
) ) )  x.  ( ( O `  A )  gcd  ( O `  B )
) )  ||  (
( O `  ( A  .+  B ) )  x.  ( ( O `
 A )  gcd  ( O `  B
) ) ) )
97 dvdsmulcr 14310 . . . . . . 7  |-  ( ( ( ( O `  A )  /  (
( O `  A
)  gcd  ( O `  B ) ) )  e.  ZZ  /\  ( O `  ( A  .+  B ) )  e.  ZZ  /\  ( ( ( O `  A
)  gcd  ( O `  B ) )  e.  ZZ  /\  ( ( O `  A )  gcd  ( O `  B ) )  =/=  0 ) )  -> 
( ( ( ( O `  A )  /  ( ( O `
 A )  gcd  ( O `  B
) ) )  x.  ( ( O `  A )  gcd  ( O `  B )
) )  ||  (
( O `  ( A  .+  B ) )  x.  ( ( O `
 A )  gcd  ( O `  B
) ) )  <->  ( ( O `  A )  /  ( ( O `
 A )  gcd  ( O `  B
) ) )  ||  ( O `  ( A 
.+  B ) ) ) )
9841, 55, 37, 38, 97syl112anc 1268 . . . . . 6  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( ( O `  A
)  /  ( ( O `  A )  gcd  ( O `  B ) ) )  x.  ( ( O `
 A )  gcd  ( O `  B
) ) )  ||  ( ( O `  ( A  .+  B ) )  x.  ( ( O `  A )  gcd  ( O `  B ) ) )  <-> 
( ( O `  A )  /  (
( O `  A
)  gcd  ( O `  B ) ) ) 
||  ( O `  ( A  .+  B ) ) ) )
9996, 98mpbid 213 . . . . 5  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( O `
 A )  / 
( ( O `  A )  gcd  ( O `  B )
) )  ||  ( O `  ( A  .+  B ) ) )
1001, 62, 17mulgdi 17406 . . . . . . . . . . . . 13  |-  ( ( G  e.  Abel  /\  (
( ( O `  ( A  .+  B ) )  x.  ( O `
 A ) )  e.  ZZ  /\  A  e.  X  /\  B  e.  X ) )  -> 
( ( ( O `
 ( A  .+  B ) )  x.  ( O `  A
) ) (.g `  G
) ( A  .+  B ) )  =  ( ( ( ( O `  ( A 
.+  B ) )  x.  ( O `  A ) ) (.g `  G ) A ) 
.+  ( ( ( O `  ( A 
.+  B ) )  x.  ( O `  A ) ) (.g `  G ) B ) ) )
10158, 88, 60, 61, 100syl13anc 1266 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( O `  ( A 
.+  B ) )  x.  ( O `  A ) ) (.g `  G ) ( A 
.+  B ) )  =  ( ( ( ( O `  ( A  .+  B ) )  x.  ( O `  A ) ) (.g `  G ) A ) 
.+  ( ( ( O `  ( A 
.+  B ) )  x.  ( O `  A ) ) (.g `  G ) B ) ) )
1021, 2, 62, 68oddvds 17142 . . . . . . . . . . . . . . 15  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( ( O `  ( A  .+  B ) )  x.  ( O `
 A ) )  e.  ZZ )  -> 
( ( O `  A )  ||  (
( O `  ( A  .+  B ) )  x.  ( O `  A ) )  <->  ( (
( O `  ( A  .+  B ) )  x.  ( O `  A ) ) (.g `  G ) A )  =  ( 0g `  G ) ) )
10367, 60, 88, 102syl3anc 1264 . . . . . . . . . . . . . 14  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( O `
 A )  ||  ( ( O `  ( A  .+  B ) )  x.  ( O `
 A ) )  <-> 
( ( ( O `
 ( A  .+  B ) )  x.  ( O `  A
) ) (.g `  G
) A )  =  ( 0g `  G
) ) )
10457, 103mpbid 213 . . . . . . . . . . . . 13  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( O `  ( A 
.+  B ) )  x.  ( O `  A ) ) (.g `  G ) A )  =  ( 0g `  G ) )
105104oveq1d 6320 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( ( O `  ( A  .+  B ) )  x.  ( O `  A ) ) (.g `  G ) A ) 
.+  ( ( ( O `  ( A 
.+  B ) )  x.  ( O `  A ) ) (.g `  G ) B ) )  =  ( ( 0g `  G ) 
.+  ( ( ( O `  ( A 
.+  B ) )  x.  ( O `  A ) ) (.g `  G ) B ) ) )
106101, 105eqtrd 2470 . . . . . . . . . . 11  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( O `  ( A 
.+  B ) )  x.  ( O `  A ) ) (.g `  G ) ( A 
.+  B ) )  =  ( ( 0g
`  G )  .+  ( ( ( O `
 ( A  .+  B ) )  x.  ( O `  A
) ) (.g `  G
) B ) ) )
107 dvdsmul1 14302 . . . . . . . . . . . . 13  |-  ( ( ( O `  ( A  .+  B ) )  e.  ZZ  /\  ( O `  A )  e.  ZZ )  ->  ( O `  ( A  .+  B ) )  ||  ( ( O `  ( A  .+  B ) )  x.  ( O `
 A ) ) )
10855, 28, 107syl2anc 665 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( O `  ( A  .+  B ) )  ||  ( ( O `  ( A 
.+  B ) )  x.  ( O `  A ) ) )
1091, 2, 62, 68oddvds 17142 . . . . . . . . . . . . 13  |-  ( ( G  e.  Grp  /\  ( A  .+  B )  e.  X  /\  (
( O `  ( A  .+  B ) )  x.  ( O `  A ) )  e.  ZZ )  ->  (
( O `  ( A  .+  B ) ) 
||  ( ( O `
 ( A  .+  B ) )  x.  ( O `  A
) )  <->  ( (
( O `  ( A  .+  B ) )  x.  ( O `  A ) ) (.g `  G ) ( A 
.+  B ) )  =  ( 0g `  G ) ) )
11067, 76, 88, 109syl3anc 1264 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( O `
 ( A  .+  B ) )  ||  ( ( O `  ( A  .+  B ) )  x.  ( O `
 A ) )  <-> 
( ( ( O `
 ( A  .+  B ) )  x.  ( O `  A
) ) (.g `  G
) ( A  .+  B ) )  =  ( 0g `  G
) ) )
111108, 110mpbid 213 . . . . . . . . . . 11  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( O `  ( A 
.+  B ) )  x.  ( O `  A ) ) (.g `  G ) ( A 
.+  B ) )  =  ( 0g `  G ) )
1121, 62mulgcl 16730 . . . . . . . . . . . . 13  |-  ( ( G  e.  Grp  /\  ( ( O `  ( A  .+  B ) )  x.  ( O `
 A ) )  e.  ZZ  /\  B  e.  X )  ->  (
( ( O `  ( A  .+  B ) )  x.  ( O `
 A ) ) (.g `  G ) B )  e.  X )
11367, 88, 61, 112syl3anc 1264 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( O `  ( A 
.+  B ) )  x.  ( O `  A ) ) (.g `  G ) B )  e.  X )
1141, 17, 68grplid 16651 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  ( ( ( O `
 ( A  .+  B ) )  x.  ( O `  A
) ) (.g `  G
) B )  e.  X )  ->  (
( 0g `  G
)  .+  ( (
( O `  ( A  .+  B ) )  x.  ( O `  A ) ) (.g `  G ) B ) )  =  ( ( ( O `  ( A  .+  B ) )  x.  ( O `  A ) ) (.g `  G ) B ) )
11567, 113, 114syl2anc 665 . . . . . . . . . . 11  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( 0g
`  G )  .+  ( ( ( O `
 ( A  .+  B ) )  x.  ( O `  A
) ) (.g `  G
) B ) )  =  ( ( ( O `  ( A 
.+  B ) )  x.  ( O `  A ) ) (.g `  G ) B ) )
116106, 111, 1153eqtr3rd 2479 . . . . . . . . . 10  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( O `  ( A 
.+  B ) )  x.  ( O `  A ) ) (.g `  G ) B )  =  ( 0g `  G ) )
1171, 2, 62, 68oddvds 17142 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  B  e.  X  /\  ( ( O `  ( A  .+  B ) )  x.  ( O `
 A ) )  e.  ZZ )  -> 
( ( O `  B )  ||  (
( O `  ( A  .+  B ) )  x.  ( O `  A ) )  <->  ( (
( O `  ( A  .+  B ) )  x.  ( O `  A ) ) (.g `  G ) B )  =  ( 0g `  G ) ) )
11867, 61, 88, 117syl3anc 1264 . . . . . . . . . 10  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( O `
 B )  ||  ( ( O `  ( A  .+  B ) )  x.  ( O `
 A ) )  <-> 
( ( ( O `
 ( A  .+  B ) )  x.  ( O `  A
) ) (.g `  G
) B )  =  ( 0g `  G
) ) )
119116, 118mpbird 235 . . . . . . . . 9  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( O `  B )  ||  (
( O `  ( A  .+  B ) )  x.  ( O `  A ) ) )
120 dvdsgcd 14482 . . . . . . . . . 10  |-  ( ( ( O `  B
)  e.  ZZ  /\  ( ( O `  ( A  .+  B ) )  x.  ( O `
 A ) )  e.  ZZ  /\  (
( O `  ( A  .+  B ) )  x.  ( O `  B ) )  e.  ZZ )  ->  (
( ( O `  B )  ||  (
( O `  ( A  .+  B ) )  x.  ( O `  A ) )  /\  ( O `  B ) 
||  ( ( O `
 ( A  .+  B ) )  x.  ( O `  B
) ) )  -> 
( O `  B
)  ||  ( (
( O `  ( A  .+  B ) )  x.  ( O `  A ) )  gcd  ( ( O `  ( A  .+  B ) )  x.  ( O `
 B ) ) ) ) )
12129, 88, 59, 120syl3anc 1264 . . . . . . . . 9  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( O `  B ) 
||  ( ( O `
 ( A  .+  B ) )  x.  ( O `  A
) )  /\  ( O `  B )  ||  ( ( O `  ( A  .+  B ) )  x.  ( O `
 B ) ) )  ->  ( O `  B )  ||  (
( ( O `  ( A  .+  B ) )  x.  ( O `
 A ) )  gcd  ( ( O `
 ( A  .+  B ) )  x.  ( O `  B
) ) ) ) )
122119, 66, 121mp2and 683 . . . . . . . 8  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( O `  B )  ||  (
( ( O `  ( A  .+  B ) )  x.  ( O `
 A ) )  gcd  ( ( O `
 ( A  .+  B ) )  x.  ( O `  B
) ) ) )
123122, 94breqtrd 4450 . . . . . . 7  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( O `  B )  ||  (
( O `  ( A  .+  B ) )  x.  ( ( O `
 A )  gcd  ( O `  B
) ) ) )
12452, 123eqbrtrd 4446 . . . . . 6  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( O `  B )  /  ( ( O `
 A )  gcd  ( O `  B
) ) )  x.  ( ( O `  A )  gcd  ( O `  B )
) )  ||  (
( O `  ( A  .+  B ) )  x.  ( ( O `
 A )  gcd  ( O `  B
) ) ) )
125 dvdsmulcr 14310 . . . . . . 7  |-  ( ( ( ( O `  B )  /  (
( O `  A
)  gcd  ( O `  B ) ) )  e.  ZZ  /\  ( O `  ( A  .+  B ) )  e.  ZZ  /\  ( ( ( O `  A
)  gcd  ( O `  B ) )  e.  ZZ  /\  ( ( O `  A )  gcd  ( O `  B ) )  =/=  0 ) )  -> 
( ( ( ( O `  B )  /  ( ( O `
 A )  gcd  ( O `  B
) ) )  x.  ( ( O `  A )  gcd  ( O `  B )
) )  ||  (
( O `  ( A  .+  B ) )  x.  ( ( O `
 A )  gcd  ( O `  B
) ) )  <->  ( ( O `  B )  /  ( ( O `
 A )  gcd  ( O `  B
) ) )  ||  ( O `  ( A 
.+  B ) ) ) )
12646, 55, 37, 38, 125syl112anc 1268 . . . . . 6  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( ( O `  B
)  /  ( ( O `  A )  gcd  ( O `  B ) ) )  x.  ( ( O `
 A )  gcd  ( O `  B
) ) )  ||  ( ( O `  ( A  .+  B ) )  x.  ( ( O `  A )  gcd  ( O `  B ) ) )  <-> 
( ( O `  B )  /  (
( O `  A
)  gcd  ( O `  B ) ) ) 
||  ( O `  ( A  .+  B ) ) ) )
127124, 126mpbid 213 . . . . 5  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( O `
 B )  / 
( ( O `  A )  gcd  ( O `  B )
) )  ||  ( O `  ( A  .+  B ) ) )
12841, 46gcdcld 14456 . . . . . . . 8  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( O `  A )  /  ( ( O `
 A )  gcd  ( O `  B
) ) )  gcd  ( ( O `  B )  /  (
( O `  A
)  gcd  ( O `  B ) ) ) )  e.  NN0 )
129128nn0cnd 10927 . . . . . . 7  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( O `  A )  /  ( ( O `
 A )  gcd  ( O `  B
) ) )  gcd  ( ( O `  B )  /  (
( O `  A
)  gcd  ( O `  B ) ) ) )  e.  CC )
130 1cnd 9658 . . . . . . 7  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  1  e.  CC )
13131mulid2d 9660 . . . . . . . 8  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( 1  x.  ( ( O `  A )  gcd  ( O `  B )
) )  =  ( ( O `  A
)  gcd  ( O `  B ) ) )
13250, 52oveq12d 6323 . . . . . . . 8  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( ( O `  A
)  /  ( ( O `  A )  gcd  ( O `  B ) ) )  x.  ( ( O `
 A )  gcd  ( O `  B
) ) )  gcd  ( ( ( O `
 B )  / 
( ( O `  A )  gcd  ( O `  B )
) )  x.  (
( O `  A
)  gcd  ( O `  B ) ) ) )  =  ( ( O `  A )  gcd  ( O `  B ) ) )
133 mulgcdr 14487 . . . . . . . . 9  |-  ( ( ( ( O `  A )  /  (
( O `  A
)  gcd  ( O `  B ) ) )  e.  ZZ  /\  (
( O `  B
)  /  ( ( O `  A )  gcd  ( O `  B ) ) )  e.  ZZ  /\  (
( O `  A
)  gcd  ( O `  B ) )  e. 
NN0 )  ->  (
( ( ( O `
 A )  / 
( ( O `  A )  gcd  ( O `  B )
) )  x.  (
( O `  A
)  gcd  ( O `  B ) ) )  gcd  ( ( ( O `  B )  /  ( ( O `
 A )  gcd  ( O `  B
) ) )  x.  ( ( O `  A )  gcd  ( O `  B )
) ) )  =  ( ( ( ( O `  A )  /  ( ( O `
 A )  gcd  ( O `  B
) ) )  gcd  ( ( O `  B )  /  (
( O `  A
)  gcd  ( O `  B ) ) ) )  x.  ( ( O `  A )  gcd  ( O `  B ) ) ) )
13441, 46, 30, 133syl3anc 1264 . . . . . . . 8  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( ( O `  A
)  /  ( ( O `  A )  gcd  ( O `  B ) ) )  x.  ( ( O `
 A )  gcd  ( O `  B
) ) )  gcd  ( ( ( O `
 B )  / 
( ( O `  A )  gcd  ( O `  B )
) )  x.  (
( O `  A
)  gcd  ( O `  B ) ) ) )  =  ( ( ( ( O `  A )  /  (
( O `  A
)  gcd  ( O `  B ) ) )  gcd  ( ( O `
 B )  / 
( ( O `  A )  gcd  ( O `  B )
) ) )  x.  ( ( O `  A )  gcd  ( O `  B )
) ) )
135131, 132, 1343eqtr2rd 2477 . . . . . . 7  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( ( O `  A
)  /  ( ( O `  A )  gcd  ( O `  B ) ) )  gcd  ( ( O `
 B )  / 
( ( O `  A )  gcd  ( O `  B )
) ) )  x.  ( ( O `  A )  gcd  ( O `  B )
) )  =  ( 1  x.  ( ( O `  A )  gcd  ( O `  B ) ) ) )
136129, 130, 31, 38, 135mulcan2ad 10247 . . . . . 6  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( O `  A )  /  ( ( O `
 A )  gcd  ( O `  B
) ) )  gcd  ( ( O `  B )  /  (
( O `  A
)  gcd  ( O `  B ) ) ) )  =  1 )
137 coprmdvds2 14631 . . . . . 6  |-  ( ( ( ( ( O `
 A )  / 
( ( O `  A )  gcd  ( O `  B )
) )  e.  ZZ  /\  ( ( O `  B )  /  (
( O `  A
)  gcd  ( O `  B ) ) )  e.  ZZ  /\  ( O `  ( A  .+  B ) )  e.  ZZ )  /\  (
( ( O `  A )  /  (
( O `  A
)  gcd  ( O `  B ) ) )  gcd  ( ( O `
 B )  / 
( ( O `  A )  gcd  ( O `  B )
) ) )  =  1 )  ->  (
( ( ( O `
 A )  / 
( ( O `  A )  gcd  ( O `  B )
) )  ||  ( O `  ( A  .+  B ) )  /\  ( ( O `  B )  /  (
( O `  A
)  gcd  ( O `  B ) ) ) 
||  ( O `  ( A  .+  B ) ) )  ->  (
( ( O `  A )  /  (
( O `  A
)  gcd  ( O `  B ) ) )  x.  ( ( O `
 B )  / 
( ( O `  A )  gcd  ( O `  B )
) ) )  ||  ( O `  ( A 
.+  B ) ) ) )
13841, 46, 55, 136, 137syl31anc 1267 . . . . 5  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( ( O `  A
)  /  ( ( O `  A )  gcd  ( O `  B ) ) ) 
||  ( O `  ( A  .+  B ) )  /\  ( ( O `  B )  /  ( ( O `
 A )  gcd  ( O `  B
) ) )  ||  ( O `  ( A 
.+  B ) ) )  ->  ( (
( O `  A
)  /  ( ( O `  A )  gcd  ( O `  B ) ) )  x.  ( ( O `
 B )  / 
( ( O `  A )  gcd  ( O `  B )
) ) )  ||  ( O `  ( A 
.+  B ) ) ) )
13999, 127, 138mp2and 683 . . . 4  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( O `  A )  /  ( ( O `
 A )  gcd  ( O `  B
) ) )  x.  ( ( O `  B )  /  (
( O `  A
)  gcd  ( O `  B ) ) ) )  ||  ( O `
 ( A  .+  B ) ) )
14041, 46zmulcld 11046 . . . . 5  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( O `  A )  /  ( ( O `
 A )  gcd  ( O `  B
) ) )  x.  ( ( O `  B )  /  (
( O `  A
)  gcd  ( O `  B ) ) ) )  e.  ZZ )
141 zsqcl 12342 . . . . . 6  |-  ( ( ( O `  A
)  gcd  ( O `  B ) )  e.  ZZ  ->  ( (
( O `  A
)  gcd  ( O `  B ) ) ^
2 )  e.  ZZ )
14237, 141syl 17 . . . . 5  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( O `  A )  gcd  ( O `  B ) ) ^
2 )  e.  ZZ )
143 dvdsmulc 14308 . . . . 5  |-  ( ( ( ( ( O `
 A )  / 
( ( O `  A )  gcd  ( O `  B )
) )  x.  (
( O `  B
)  /  ( ( O `  A )  gcd  ( O `  B ) ) ) )  e.  ZZ  /\  ( O `  ( A 
.+  B ) )  e.  ZZ  /\  (
( ( O `  A )  gcd  ( O `  B )
) ^ 2 )  e.  ZZ )  -> 
( ( ( ( O `  A )  /  ( ( O `
 A )  gcd  ( O `  B
) ) )  x.  ( ( O `  B )  /  (
( O `  A
)  gcd  ( O `  B ) ) ) )  ||  ( O `
 ( A  .+  B ) )  -> 
( ( ( ( O `  A )  /  ( ( O `
 A )  gcd  ( O `  B
) ) )  x.  ( ( O `  B )  /  (
( O `  A
)  gcd  ( O `  B ) ) ) )  x.  ( ( ( O `  A
)  gcd  ( O `  B ) ) ^
2 ) )  ||  ( ( O `  ( A  .+  B ) )  x.  ( ( ( O `  A
)  gcd  ( O `  B ) ) ^
2 ) ) ) )
144140, 55, 142, 143syl3anc 1264 . . . 4  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( ( O `  A
)  /  ( ( O `  A )  gcd  ( O `  B ) ) )  x.  ( ( O `
 B )  / 
( ( O `  A )  gcd  ( O `  B )
) ) )  ||  ( O `  ( A 
.+  B ) )  ->  ( ( ( ( O `  A
)  /  ( ( O `  A )  gcd  ( O `  B ) ) )  x.  ( ( O `
 B )  / 
( ( O `  A )  gcd  ( O `  B )
) ) )  x.  ( ( ( O `
 A )  gcd  ( O `  B
) ) ^ 2 ) )  ||  (
( O `  ( A  .+  B ) )  x.  ( ( ( O `  A )  gcd  ( O `  B ) ) ^
2 ) ) ) )
145139, 144mpd 15 . . 3  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( ( O `  A
)  /  ( ( O `  A )  gcd  ( O `  B ) ) )  x.  ( ( O `
 B )  / 
( ( O `  A )  gcd  ( O `  B )
) ) )  x.  ( ( ( O `
 A )  gcd  ( O `  B
) ) ^ 2 ) )  ||  (
( O `  ( A  .+  B ) )  x.  ( ( ( O `  A )  gcd  ( O `  B ) ) ^
2 ) ) )
14654, 145eqbrtrrd 4448 . 2  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( O `
 A )  x.  ( O `  B
) )  ||  (
( O `  ( A  .+  B ) )  x.  ( ( ( O `  A )  gcd  ( O `  B ) ) ^
2 ) ) )
14727, 146pm2.61dane 2749 1  |-  ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  ->  (
( O `  A
)  x.  ( O `
 B ) ) 
||  ( ( O `
 ( A  .+  B ) )  x.  ( ( ( O `
 A )  gcd  ( O `  B
) ) ^ 2 ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1870    =/= wne 2625   class class class wbr 4426   ` cfv 5601  (class class class)co 6305   0cc0 9538   1c1 9539    x. cmul 9543    / cdiv 10268   2c2 10659   NN0cn0 10869   ZZcz 10937   ^cexp 12269    || cdvds 14283    gcd cgcd 14442   Basecbs 15084   +g cplusg 15153   0gc0g 15301   Grpcgrp 16624  .gcmg 16627   odcod 17120   Abelcabl 17370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-inf2 8146  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615  ax-pre-sup 9616
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-1st 6807  df-2nd 6808  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-er 7371  df-en 7578  df-dom 7579  df-sdom 7580  df-sup 7962  df-inf 7963  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-div 10269  df-nn 10610  df-2 10668  df-3 10669  df-n0 10870  df-z 10938  df-uz 11160  df-rp 11303  df-fz 11783  df-fzo 11914  df-fl 12025  df-mod 12094  df-seq 12211  df-exp 12270  df-cj 13141  df-re 13142  df-im 13143  df-sqrt 13277  df-abs 13278  df-dvds 14284  df-gcd 14443  df-0g 15303  df-mgm 16443  df-sgrp 16482  df-mnd 16492  df-grp 16628  df-minusg 16629  df-sbg 16630  df-mulg 16631  df-od 17124  df-cmn 17371  df-abl 17372
This theorem is referenced by:  odadd  17427
  Copyright terms: Public domain W3C validator