MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odadd1 Structured version   Unicode version

Theorem odadd1 16454
Description: The order of a product in an abelian group divides the LCM of the orders of the factors. (Contributed by Mario Carneiro, 20-Oct-2015.)
Hypotheses
Ref Expression
odadd1.1  |-  O  =  ( od `  G
)
odadd1.2  |-  X  =  ( Base `  G
)
odadd1.3  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
odadd1  |-  ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  ->  (
( O `  ( A  .+  B ) )  x.  ( ( O `
 A )  gcd  ( O `  B
) ) )  ||  ( ( O `  A )  x.  ( O `  B )
) )

Proof of Theorem odadd1
StepHypRef Expression
1 ablgrp 16406 . . . . . . . . 9  |-  ( G  e.  Abel  ->  G  e. 
Grp )
2 odadd1.2 . . . . . . . . . 10  |-  X  =  ( Base `  G
)
3 odadd1.3 . . . . . . . . . 10  |-  .+  =  ( +g  `  G )
42, 3grpcl 15673 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  B  e.  X )  ->  ( A  .+  B
)  e.  X )
51, 4syl3an1 1252 . . . . . . . 8  |-  ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  ->  ( A  .+  B )  e.  X )
6 odadd1.1 . . . . . . . . 9  |-  O  =  ( od `  G
)
72, 6odcl 16163 . . . . . . . 8  |-  ( ( A  .+  B )  e.  X  ->  ( O `  ( A  .+  B ) )  e. 
NN0 )
85, 7syl 16 . . . . . . 7  |-  ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  ->  ( O `  ( A  .+  B ) )  e. 
NN0 )
98nn0zd 10859 . . . . . 6  |-  ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  ->  ( O `  ( A  .+  B ) )  e.  ZZ )
102, 6odcl 16163 . . . . . . . . . 10  |-  ( A  e.  X  ->  ( O `  A )  e.  NN0 )
11103ad2ant2 1010 . . . . . . . . 9  |-  ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  ->  ( O `  A )  e.  NN0 )
1211nn0zd 10859 . . . . . . . 8  |-  ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  ->  ( O `  A )  e.  ZZ )
132, 6odcl 16163 . . . . . . . . . 10  |-  ( B  e.  X  ->  ( O `  B )  e.  NN0 )
14133ad2ant3 1011 . . . . . . . . 9  |-  ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  ->  ( O `  B )  e.  NN0 )
1514nn0zd 10859 . . . . . . . 8  |-  ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  ->  ( O `  B )  e.  ZZ )
1612, 15gcdcld 13823 . . . . . . 7  |-  ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  ->  (
( O `  A
)  gcd  ( O `  B ) )  e. 
NN0 )
1716nn0zd 10859 . . . . . 6  |-  ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  ->  (
( O `  A
)  gcd  ( O `  B ) )  e.  ZZ )
189, 17zmulcld 10867 . . . . 5  |-  ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  ->  (
( O `  ( A  .+  B ) )  x.  ( ( O `
 A )  gcd  ( O `  B
) ) )  e.  ZZ )
1918adantr 465 . . . 4  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =  0 )  ->  ( ( O `
 ( A  .+  B ) )  x.  ( ( O `  A )  gcd  ( O `  B )
) )  e.  ZZ )
20 dvds0 13669 . . . 4  |-  ( ( ( O `  ( A  .+  B ) )  x.  ( ( O `
 A )  gcd  ( O `  B
) ) )  e.  ZZ  ->  ( ( O `  ( A  .+  B ) )  x.  ( ( O `  A )  gcd  ( O `  B )
) )  ||  0
)
2119, 20syl 16 . . 3  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =  0 )  ->  ( ( O `
 ( A  .+  B ) )  x.  ( ( O `  A )  gcd  ( O `  B )
) )  ||  0
)
22 gcdeq0 13826 . . . . . 6  |-  ( ( ( O `  A
)  e.  ZZ  /\  ( O `  B )  e.  ZZ )  -> 
( ( ( O `
 A )  gcd  ( O `  B
) )  =  0  <-> 
( ( O `  A )  =  0  /\  ( O `  B )  =  0 ) ) )
2312, 15, 22syl2anc 661 . . . . 5  |-  ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( O `  A )  gcd  ( O `  B )
)  =  0  <->  (
( O `  A
)  =  0  /\  ( O `  B
)  =  0 ) ) )
2423biimpa 484 . . . 4  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =  0 )  ->  ( ( O `
 A )  =  0  /\  ( O `
 B )  =  0 ) )
25 oveq12 6212 . . . . 5  |-  ( ( ( O `  A
)  =  0  /\  ( O `  B
)  =  0 )  ->  ( ( O `
 A )  x.  ( O `  B
) )  =  ( 0  x.  0 ) )
26 0cn 9492 . . . . . 6  |-  0  e.  CC
2726mul01i 9673 . . . . 5  |-  ( 0  x.  0 )  =  0
2825, 27syl6eq 2511 . . . 4  |-  ( ( ( O `  A
)  =  0  /\  ( O `  B
)  =  0 )  ->  ( ( O `
 A )  x.  ( O `  B
) )  =  0 )
2924, 28syl 16 . . 3  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =  0 )  ->  ( ( O `
 A )  x.  ( O `  B
) )  =  0 )
3021, 29breqtrrd 4429 . 2  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =  0 )  ->  ( ( O `
 ( A  .+  B ) )  x.  ( ( O `  A )  gcd  ( O `  B )
) )  ||  (
( O `  A
)  x.  ( O `
 B ) ) )
31 simpl1 991 . . . . . . 7  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  G  e.  Abel )
3212adantr 465 . . . . . . . . . . 11  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( O `  A )  e.  ZZ )
3315adantr 465 . . . . . . . . . . 11  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( O `  B )  e.  ZZ )
34 gcddvds 13820 . . . . . . . . . . 11  |-  ( ( ( O `  A
)  e.  ZZ  /\  ( O `  B )  e.  ZZ )  -> 
( ( ( O `
 A )  gcd  ( O `  B
) )  ||  ( O `  A )  /\  ( ( O `  A )  gcd  ( O `  B )
)  ||  ( O `  B ) ) )
3532, 33, 34syl2anc 661 . . . . . . . . . 10  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( O `  A )  gcd  ( O `  B ) )  ||  ( O `  A )  /\  ( ( O `
 A )  gcd  ( O `  B
) )  ||  ( O `  B )
) )
3635simpld 459 . . . . . . . . 9  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( O `
 A )  gcd  ( O `  B
) )  ||  ( O `  A )
)
3717adantr 465 . . . . . . . . . 10  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( O `
 A )  gcd  ( O `  B
) )  e.  ZZ )
38 dvdsmultr1 13688 . . . . . . . . . 10  |-  ( ( ( ( O `  A )  gcd  ( O `  B )
)  e.  ZZ  /\  ( O `  A )  e.  ZZ  /\  ( O `  B )  e.  ZZ )  ->  (
( ( O `  A )  gcd  ( O `  B )
)  ||  ( O `  A )  ->  (
( O `  A
)  gcd  ( O `  B ) )  ||  ( ( O `  A )  x.  ( O `  B )
) ) )
3937, 32, 33, 38syl3anc 1219 . . . . . . . . 9  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( O `  A )  gcd  ( O `  B ) )  ||  ( O `  A )  ->  ( ( O `
 A )  gcd  ( O `  B
) )  ||  (
( O `  A
)  x.  ( O `
 B ) ) ) )
4036, 39mpd 15 . . . . . . . 8  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( O `
 A )  gcd  ( O `  B
) )  ||  (
( O `  A
)  x.  ( O `
 B ) ) )
41 simpr 461 . . . . . . . . 9  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( O `
 A )  gcd  ( O `  B
) )  =/=  0
)
4232, 33zmulcld 10867 . . . . . . . . 9  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( O `
 A )  x.  ( O `  B
) )  e.  ZZ )
43 dvdsval2 13659 . . . . . . . . 9  |-  ( ( ( ( O `  A )  gcd  ( O `  B )
)  e.  ZZ  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0  /\  ( ( O `  A )  x.  ( O `  B )
)  e.  ZZ )  ->  ( ( ( O `  A )  gcd  ( O `  B ) )  ||  ( ( O `  A )  x.  ( O `  B )
)  <->  ( ( ( O `  A )  x.  ( O `  B ) )  / 
( ( O `  A )  gcd  ( O `  B )
) )  e.  ZZ ) )
4437, 41, 42, 43syl3anc 1219 . . . . . . . 8  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( O `  A )  gcd  ( O `  B ) )  ||  ( ( O `  A )  x.  ( O `  B )
)  <->  ( ( ( O `  A )  x.  ( O `  B ) )  / 
( ( O `  A )  gcd  ( O `  B )
) )  e.  ZZ ) )
4540, 44mpbid 210 . . . . . . 7  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( O `  A )  x.  ( O `  B ) )  / 
( ( O `  A )  gcd  ( O `  B )
) )  e.  ZZ )
46 simpl2 992 . . . . . . 7  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  A  e.  X
)
47 simpl3 993 . . . . . . 7  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  B  e.  X
)
48 eqid 2454 . . . . . . . 8  |-  (.g `  G
)  =  (.g `  G
)
492, 48, 3mulgdi 16438 . . . . . . 7  |-  ( ( G  e.  Abel  /\  (
( ( ( O `
 A )  x.  ( O `  B
) )  /  (
( O `  A
)  gcd  ( O `  B ) ) )  e.  ZZ  /\  A  e.  X  /\  B  e.  X ) )  -> 
( ( ( ( O `  A )  x.  ( O `  B ) )  / 
( ( O `  A )  gcd  ( O `  B )
) ) (.g `  G
) ( A  .+  B ) )  =  ( ( ( ( ( O `  A
)  x.  ( O `
 B ) )  /  ( ( O `
 A )  gcd  ( O `  B
) ) ) (.g `  G ) A ) 
.+  ( ( ( ( O `  A
)  x.  ( O `
 B ) )  /  ( ( O `
 A )  gcd  ( O `  B
) ) ) (.g `  G ) B ) ) )
5031, 45, 46, 47, 49syl13anc 1221 . . . . . 6  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( ( O `  A
)  x.  ( O `
 B ) )  /  ( ( O `
 A )  gcd  ( O `  B
) ) ) (.g `  G ) ( A 
.+  B ) )  =  ( ( ( ( ( O `  A )  x.  ( O `  B )
)  /  ( ( O `  A )  gcd  ( O `  B ) ) ) (.g `  G ) A )  .+  ( ( ( ( O `  A )  x.  ( O `  B )
)  /  ( ( O `  A )  gcd  ( O `  B ) ) ) (.g `  G ) B ) ) )
5135simprd 463 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( O `
 A )  gcd  ( O `  B
) )  ||  ( O `  B )
)
52 dvdsval2 13659 . . . . . . . . . . . . 13  |-  ( ( ( ( O `  A )  gcd  ( O `  B )
)  e.  ZZ  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0  /\  ( O `  B
)  e.  ZZ )  ->  ( ( ( O `  A )  gcd  ( O `  B ) )  ||  ( O `  B )  <-> 
( ( O `  B )  /  (
( O `  A
)  gcd  ( O `  B ) ) )  e.  ZZ ) )
5337, 41, 33, 52syl3anc 1219 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( O `  A )  gcd  ( O `  B ) )  ||  ( O `  B )  <-> 
( ( O `  B )  /  (
( O `  A
)  gcd  ( O `  B ) ) )  e.  ZZ ) )
5451, 53mpbid 210 . . . . . . . . . . 11  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( O `
 B )  / 
( ( O `  A )  gcd  ( O `  B )
) )  e.  ZZ )
55 dvdsmul1 13675 . . . . . . . . . . 11  |-  ( ( ( O `  A
)  e.  ZZ  /\  ( ( O `  B )  /  (
( O `  A
)  gcd  ( O `  B ) ) )  e.  ZZ )  -> 
( O `  A
)  ||  ( ( O `  A )  x.  ( ( O `  B )  /  (
( O `  A
)  gcd  ( O `  B ) ) ) ) )
5632, 54, 55syl2anc 661 . . . . . . . . . 10  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( O `  A )  ||  (
( O `  A
)  x.  ( ( O `  B )  /  ( ( O `
 A )  gcd  ( O `  B
) ) ) ) )
5732zcnd 10862 . . . . . . . . . . 11  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( O `  A )  e.  CC )
5833zcnd 10862 . . . . . . . . . . 11  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( O `  B )  e.  CC )
5937zcnd 10862 . . . . . . . . . . 11  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( O `
 A )  gcd  ( O `  B
) )  e.  CC )
6057, 58, 59, 41divassd 10256 . . . . . . . . . 10  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( O `  A )  x.  ( O `  B ) )  / 
( ( O `  A )  gcd  ( O `  B )
) )  =  ( ( O `  A
)  x.  ( ( O `  B )  /  ( ( O `
 A )  gcd  ( O `  B
) ) ) ) )
6156, 60breqtrrd 4429 . . . . . . . . 9  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( O `  A )  ||  (
( ( O `  A )  x.  ( O `  B )
)  /  ( ( O `  A )  gcd  ( O `  B ) ) ) )
6231, 1syl 16 . . . . . . . . . 10  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  G  e.  Grp )
63 eqid 2454 . . . . . . . . . . 11  |-  ( 0g
`  G )  =  ( 0g `  G
)
642, 6, 48, 63oddvds 16174 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( ( ( O `
 A )  x.  ( O `  B
) )  /  (
( O `  A
)  gcd  ( O `  B ) ) )  e.  ZZ )  -> 
( ( O `  A )  ||  (
( ( O `  A )  x.  ( O `  B )
)  /  ( ( O `  A )  gcd  ( O `  B ) ) )  <-> 
( ( ( ( O `  A )  x.  ( O `  B ) )  / 
( ( O `  A )  gcd  ( O `  B )
) ) (.g `  G
) A )  =  ( 0g `  G
) ) )
6562, 46, 45, 64syl3anc 1219 . . . . . . . . 9  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( O `
 A )  ||  ( ( ( O `
 A )  x.  ( O `  B
) )  /  (
( O `  A
)  gcd  ( O `  B ) ) )  <-> 
( ( ( ( O `  A )  x.  ( O `  B ) )  / 
( ( O `  A )  gcd  ( O `  B )
) ) (.g `  G
) A )  =  ( 0g `  G
) ) )
6661, 65mpbid 210 . . . . . . . 8  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( ( O `  A
)  x.  ( O `
 B ) )  /  ( ( O `
 A )  gcd  ( O `  B
) ) ) (.g `  G ) A )  =  ( 0g `  G ) )
67 dvdsval2 13659 . . . . . . . . . . . . 13  |-  ( ( ( ( O `  A )  gcd  ( O `  B )
)  e.  ZZ  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0  /\  ( O `  A
)  e.  ZZ )  ->  ( ( ( O `  A )  gcd  ( O `  B ) )  ||  ( O `  A )  <-> 
( ( O `  A )  /  (
( O `  A
)  gcd  ( O `  B ) ) )  e.  ZZ ) )
6837, 41, 32, 67syl3anc 1219 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( O `  A )  gcd  ( O `  B ) )  ||  ( O `  A )  <-> 
( ( O `  A )  /  (
( O `  A
)  gcd  ( O `  B ) ) )  e.  ZZ ) )
6936, 68mpbid 210 . . . . . . . . . . 11  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( O `
 A )  / 
( ( O `  A )  gcd  ( O `  B )
) )  e.  ZZ )
70 dvdsmul1 13675 . . . . . . . . . . 11  |-  ( ( ( O `  B
)  e.  ZZ  /\  ( ( O `  A )  /  (
( O `  A
)  gcd  ( O `  B ) ) )  e.  ZZ )  -> 
( O `  B
)  ||  ( ( O `  B )  x.  ( ( O `  A )  /  (
( O `  A
)  gcd  ( O `  B ) ) ) ) )
7133, 69, 70syl2anc 661 . . . . . . . . . 10  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( O `  B )  ||  (
( O `  B
)  x.  ( ( O `  A )  /  ( ( O `
 A )  gcd  ( O `  B
) ) ) ) )
7257, 58mulcomd 9521 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( O `
 A )  x.  ( O `  B
) )  =  ( ( O `  B
)  x.  ( O `
 A ) ) )
7372oveq1d 6218 . . . . . . . . . . 11  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( O `  A )  x.  ( O `  B ) )  / 
( ( O `  A )  gcd  ( O `  B )
) )  =  ( ( ( O `  B )  x.  ( O `  A )
)  /  ( ( O `  A )  gcd  ( O `  B ) ) ) )
7458, 57, 59, 41divassd 10256 . . . . . . . . . . 11  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( O `  B )  x.  ( O `  A ) )  / 
( ( O `  A )  gcd  ( O `  B )
) )  =  ( ( O `  B
)  x.  ( ( O `  A )  /  ( ( O `
 A )  gcd  ( O `  B
) ) ) ) )
7573, 74eqtrd 2495 . . . . . . . . . 10  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( O `  A )  x.  ( O `  B ) )  / 
( ( O `  A )  gcd  ( O `  B )
) )  =  ( ( O `  B
)  x.  ( ( O `  A )  /  ( ( O `
 A )  gcd  ( O `  B
) ) ) ) )
7671, 75breqtrrd 4429 . . . . . . . . 9  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( O `  B )  ||  (
( ( O `  A )  x.  ( O `  B )
)  /  ( ( O `  A )  gcd  ( O `  B ) ) ) )
772, 6, 48, 63oddvds 16174 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  B  e.  X  /\  ( ( ( O `
 A )  x.  ( O `  B
) )  /  (
( O `  A
)  gcd  ( O `  B ) ) )  e.  ZZ )  -> 
( ( O `  B )  ||  (
( ( O `  A )  x.  ( O `  B )
)  /  ( ( O `  A )  gcd  ( O `  B ) ) )  <-> 
( ( ( ( O `  A )  x.  ( O `  B ) )  / 
( ( O `  A )  gcd  ( O `  B )
) ) (.g `  G
) B )  =  ( 0g `  G
) ) )
7862, 47, 45, 77syl3anc 1219 . . . . . . . . 9  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( O `
 B )  ||  ( ( ( O `
 A )  x.  ( O `  B
) )  /  (
( O `  A
)  gcd  ( O `  B ) ) )  <-> 
( ( ( ( O `  A )  x.  ( O `  B ) )  / 
( ( O `  A )  gcd  ( O `  B )
) ) (.g `  G
) B )  =  ( 0g `  G
) ) )
7976, 78mpbid 210 . . . . . . . 8  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( ( O `  A
)  x.  ( O `
 B ) )  /  ( ( O `
 A )  gcd  ( O `  B
) ) ) (.g `  G ) B )  =  ( 0g `  G ) )
8066, 79oveq12d 6221 . . . . . . 7  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( ( ( O `  A )  x.  ( O `  B )
)  /  ( ( O `  A )  gcd  ( O `  B ) ) ) (.g `  G ) A )  .+  ( ( ( ( O `  A )  x.  ( O `  B )
)  /  ( ( O `  A )  gcd  ( O `  B ) ) ) (.g `  G ) B ) )  =  ( ( 0g `  G
)  .+  ( 0g `  G ) ) )
812, 63grpidcl 15688 . . . . . . . . 9  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  X )
8262, 81syl 16 . . . . . . . 8  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( 0g `  G )  e.  X
)
832, 3, 63grplid 15690 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( 0g `  G )  e.  X )  -> 
( ( 0g `  G )  .+  ( 0g `  G ) )  =  ( 0g `  G ) )
8462, 82, 83syl2anc 661 . . . . . . 7  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( 0g
`  G )  .+  ( 0g `  G ) )  =  ( 0g
`  G ) )
8580, 84eqtrd 2495 . . . . . 6  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( ( ( O `  A )  x.  ( O `  B )
)  /  ( ( O `  A )  gcd  ( O `  B ) ) ) (.g `  G ) A )  .+  ( ( ( ( O `  A )  x.  ( O `  B )
)  /  ( ( O `  A )  gcd  ( O `  B ) ) ) (.g `  G ) B ) )  =  ( 0g `  G ) )
8650, 85eqtrd 2495 . . . . 5  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( ( O `  A
)  x.  ( O `
 B ) )  /  ( ( O `
 A )  gcd  ( O `  B
) ) ) (.g `  G ) ( A 
.+  B ) )  =  ( 0g `  G ) )
875adantr 465 . . . . . 6  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( A  .+  B )  e.  X
)
882, 6, 48, 63oddvds 16174 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( A  .+  B )  e.  X  /\  (
( ( O `  A )  x.  ( O `  B )
)  /  ( ( O `  A )  gcd  ( O `  B ) ) )  e.  ZZ )  -> 
( ( O `  ( A  .+  B ) )  ||  ( ( ( O `  A
)  x.  ( O `
 B ) )  /  ( ( O `
 A )  gcd  ( O `  B
) ) )  <->  ( (
( ( O `  A )  x.  ( O `  B )
)  /  ( ( O `  A )  gcd  ( O `  B ) ) ) (.g `  G ) ( A  .+  B ) )  =  ( 0g
`  G ) ) )
8962, 87, 45, 88syl3anc 1219 . . . . 5  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( O `
 ( A  .+  B ) )  ||  ( ( ( O `
 A )  x.  ( O `  B
) )  /  (
( O `  A
)  gcd  ( O `  B ) ) )  <-> 
( ( ( ( O `  A )  x.  ( O `  B ) )  / 
( ( O `  A )  gcd  ( O `  B )
) ) (.g `  G
) ( A  .+  B ) )  =  ( 0g `  G
) ) )
9086, 89mpbird 232 . . . 4  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( O `  ( A  .+  B ) )  ||  ( ( ( O `  A
)  x.  ( O `
 B ) )  /  ( ( O `
 A )  gcd  ( O `  B
) ) ) )
919adantr 465 . . . . 5  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( O `  ( A  .+  B ) )  e.  ZZ )
92 dvdsmulcr 13683 . . . . 5  |-  ( ( ( O `  ( A  .+  B ) )  e.  ZZ  /\  (
( ( O `  A )  x.  ( O `  B )
)  /  ( ( O `  A )  gcd  ( O `  B ) ) )  e.  ZZ  /\  (
( ( O `  A )  gcd  ( O `  B )
)  e.  ZZ  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 ) )  ->  ( (
( O `  ( A  .+  B ) )  x.  ( ( O `
 A )  gcd  ( O `  B
) ) )  ||  ( ( ( ( O `  A )  x.  ( O `  B ) )  / 
( ( O `  A )  gcd  ( O `  B )
) )  x.  (
( O `  A
)  gcd  ( O `  B ) ) )  <-> 
( O `  ( A  .+  B ) ) 
||  ( ( ( O `  A )  x.  ( O `  B ) )  / 
( ( O `  A )  gcd  ( O `  B )
) ) ) )
9391, 45, 37, 41, 92syl112anc 1223 . . . 4  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( O `  ( A 
.+  B ) )  x.  ( ( O `
 A )  gcd  ( O `  B
) ) )  ||  ( ( ( ( O `  A )  x.  ( O `  B ) )  / 
( ( O `  A )  gcd  ( O `  B )
) )  x.  (
( O `  A
)  gcd  ( O `  B ) ) )  <-> 
( O `  ( A  .+  B ) ) 
||  ( ( ( O `  A )  x.  ( O `  B ) )  / 
( ( O `  A )  gcd  ( O `  B )
) ) ) )
9490, 93mpbird 232 . . 3  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( O `
 ( A  .+  B ) )  x.  ( ( O `  A )  gcd  ( O `  B )
) )  ||  (
( ( ( O `
 A )  x.  ( O `  B
) )  /  (
( O `  A
)  gcd  ( O `  B ) ) )  x.  ( ( O `
 A )  gcd  ( O `  B
) ) ) )
9542zcnd 10862 . . . 4  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( O `
 A )  x.  ( O `  B
) )  e.  CC )
9695, 59, 41divcan1d 10222 . . 3  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( ( O `  A
)  x.  ( O `
 B ) )  /  ( ( O `
 A )  gcd  ( O `  B
) ) )  x.  ( ( O `  A )  gcd  ( O `  B )
) )  =  ( ( O `  A
)  x.  ( O `
 B ) ) )
9794, 96breqtrd 4427 . 2  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( O `
 ( A  .+  B ) )  x.  ( ( O `  A )  gcd  ( O `  B )
) )  ||  (
( O `  A
)  x.  ( O `
 B ) ) )
9830, 97pm2.61dane 2770 1  |-  ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  ->  (
( O `  ( A  .+  B ) )  x.  ( ( O `
 A )  gcd  ( O `  B
) ) )  ||  ( ( O `  A )  x.  ( O `  B )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2648   class class class wbr 4403   ` cfv 5529  (class class class)co 6203   0cc0 9396    x. cmul 9401    / cdiv 10107   NN0cn0 10693   ZZcz 10760    || cdivides 13656    gcd cgcd 13811   Basecbs 14295   +g cplusg 14360   0gc0g 14500   Grpcgrp 15532  .gcmg 15536   odcod 16152   Abelcabel 16402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-inf2 7961  ax-cnex 9452  ax-resscn 9453  ax-1cn 9454  ax-icn 9455  ax-addcl 9456  ax-addrcl 9457  ax-mulcl 9458  ax-mulrcl 9459  ax-mulcom 9460  ax-addass 9461  ax-mulass 9462  ax-distr 9463  ax-i2m1 9464  ax-1ne0 9465  ax-1rid 9466  ax-rnegex 9467  ax-rrecex 9468  ax-cnre 9469  ax-pre-lttri 9470  ax-pre-lttrn 9471  ax-pre-ltadd 9472  ax-pre-mulgt0 9473  ax-pre-sup 9474
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-uni 4203  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-tr 4497  df-eprel 4743  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-we 4792  df-ord 4833  df-on 4834  df-lim 4835  df-suc 4836  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-om 6590  df-1st 6690  df-2nd 6691  df-recs 6945  df-rdg 6979  df-er 7214  df-en 7424  df-dom 7425  df-sdom 7426  df-sup 7805  df-pnf 9534  df-mnf 9535  df-xr 9536  df-ltxr 9537  df-le 9538  df-sub 9711  df-neg 9712  df-div 10108  df-nn 10437  df-2 10494  df-3 10495  df-n0 10694  df-z 10761  df-uz 10976  df-rp 11106  df-fz 11558  df-fzo 11669  df-fl 11762  df-mod 11829  df-seq 11927  df-exp 11986  df-cj 12709  df-re 12710  df-im 12711  df-sqr 12845  df-abs 12846  df-dvds 13657  df-gcd 13812  df-0g 14502  df-mnd 15537  df-grp 15667  df-minusg 15668  df-sbg 15669  df-mulg 15670  df-od 16156  df-cmn 16403  df-abl 16404
This theorem is referenced by:  odadd  16456  torsubg  16460
  Copyright terms: Public domain W3C validator