MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  od1 Structured version   Unicode version

Theorem od1 16182
Description: The order of the group identity is one. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Mario Carneiro, 23-Sep-2015.)
Hypotheses
Ref Expression
od1.1  |-  O  =  ( od `  G
)
od1.2  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
od1  |-  ( G  e.  Grp  ->  ( O `  .0.  )  =  1 )

Proof of Theorem od1
StepHypRef Expression
1 eqid 2454 . . . 4  |-  ( Base `  G )  =  (
Base `  G )
2 od1.2 . . . 4  |-  .0.  =  ( 0g `  G )
31, 2grpidcl 15686 . . 3  |-  ( G  e.  Grp  ->  .0.  e.  ( Base `  G
) )
4 1nn 10445 . . . 4  |-  1  e.  NN
54a1i 11 . . 3  |-  ( G  e.  Grp  ->  1  e.  NN )
6 eqid 2454 . . . . 5  |-  (.g `  G
)  =  (.g `  G
)
71, 6mulg1 15754 . . . 4  |-  (  .0. 
e.  ( Base `  G
)  ->  ( 1 (.g `  G )  .0.  )  =  .0.  )
83, 7syl 16 . . 3  |-  ( G  e.  Grp  ->  (
1 (.g `  G )  .0.  )  =  .0.  )
9 od1.1 . . . 4  |-  O  =  ( od `  G
)
101, 9, 6, 2odlem2 16164 . . 3  |-  ( (  .0.  e.  ( Base `  G )  /\  1  e.  NN  /\  ( 1 (.g `  G )  .0.  )  =  .0.  )  ->  ( O `  .0.  )  e.  ( 1 ... 1 ) )
113, 5, 8, 10syl3anc 1219 . 2  |-  ( G  e.  Grp  ->  ( O `  .0.  )  e.  ( 1 ... 1
) )
12 elfz1eq 11580 . 2  |-  ( ( O `  .0.  )  e.  ( 1 ... 1
)  ->  ( O `  .0.  )  =  1 )
1311, 12syl 16 1  |-  ( G  e.  Grp  ->  ( O `  .0.  )  =  1 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1370    e. wcel 1758   ` cfv 5527  (class class class)co 6201   1c1 9395   NNcn 10434   ...cfz 11555   Basecbs 14293   0gc0g 14498   Grpcgrp 15530  .gcmg 15534   odcod 16150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4512  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640  ax-un 6483  ax-inf2 7959  ax-cnex 9450  ax-resscn 9451  ax-1cn 9452  ax-icn 9453  ax-addcl 9454  ax-addrcl 9455  ax-mulcl 9456  ax-mulrcl 9457  ax-mulcom 9458  ax-addass 9459  ax-mulass 9460  ax-distr 9461  ax-i2m1 9462  ax-1ne0 9463  ax-1rid 9464  ax-rnegex 9465  ax-rrecex 9466  ax-cnre 9467  ax-pre-lttri 9468  ax-pre-lttrn 9469  ax-pre-ltadd 9470  ax-pre-mulgt0 9471
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-tp 3991  df-op 3993  df-uni 4201  df-iun 4282  df-br 4402  df-opab 4460  df-mpt 4461  df-tr 4495  df-eprel 4741  df-id 4745  df-po 4750  df-so 4751  df-fr 4788  df-we 4790  df-ord 4831  df-on 4832  df-lim 4833  df-suc 4834  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-res 4961  df-ima 4962  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-f1 5532  df-fo 5533  df-f1o 5534  df-fv 5535  df-riota 6162  df-ov 6204  df-oprab 6205  df-mpt2 6206  df-om 6588  df-1st 6688  df-2nd 6689  df-recs 6943  df-rdg 6977  df-er 7212  df-en 7422  df-dom 7423  df-sdom 7424  df-sup 7803  df-pnf 9532  df-mnf 9533  df-xr 9534  df-ltxr 9535  df-le 9536  df-sub 9709  df-neg 9710  df-nn 10435  df-n0 10692  df-z 10759  df-uz 10974  df-fz 11556  df-seq 11925  df-0g 14500  df-mnd 15535  df-grp 15665  df-mulg 15668  df-od 16154
This theorem is referenced by:  odeq1  16183  torsubg  16458  oddvdssubg  16459  pgpfaclem2  16706
  Copyright terms: Public domain W3C validator