MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ocvlss Structured version   Unicode version

Theorem ocvlss 18681
Description: The orthocomplement of a subset is a linear subspace of the pre-Hilbert space. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
ocvss.v  |-  V  =  ( Base `  W
)
ocvss.o  |-  ._|_  =  ( ocv `  W )
ocvlss.l  |-  L  =  ( LSubSp `  W )
Assertion
Ref Expression
ocvlss  |-  ( ( W  e.  PreHil  /\  S  C_  V )  ->  (  ._|_  `  S )  e.  L )

Proof of Theorem ocvlss
Dummy variables  x  r  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ocvss.v . . . 4  |-  V  =  ( Base `  W
)
2 ocvss.o . . . 4  |-  ._|_  =  ( ocv `  W )
31, 2ocvss 18679 . . 3  |-  (  ._|_  `  S )  C_  V
43a1i 11 . 2  |-  ( ( W  e.  PreHil  /\  S  C_  V )  ->  (  ._|_  `  S )  C_  V )
5 simpr 461 . . . 4  |-  ( ( W  e.  PreHil  /\  S  C_  V )  ->  S  C_  V )
6 phllmod 18643 . . . . . 6  |-  ( W  e.  PreHil  ->  W  e.  LMod )
76adantr 465 . . . . 5  |-  ( ( W  e.  PreHil  /\  S  C_  V )  ->  W  e.  LMod )
8 eqid 2443 . . . . . 6  |-  ( 0g
`  W )  =  ( 0g `  W
)
91, 8lmod0vcl 17520 . . . . 5  |-  ( W  e.  LMod  ->  ( 0g
`  W )  e.  V )
107, 9syl 16 . . . 4  |-  ( ( W  e.  PreHil  /\  S  C_  V )  ->  ( 0g `  W )  e.  V )
11 simpll 753 . . . . . 6  |-  ( ( ( W  e.  PreHil  /\  S  C_  V )  /\  x  e.  S
)  ->  W  e.  PreHil )
125sselda 3489 . . . . . 6  |-  ( ( ( W  e.  PreHil  /\  S  C_  V )  /\  x  e.  S
)  ->  x  e.  V )
13 eqid 2443 . . . . . . 7  |-  (Scalar `  W )  =  (Scalar `  W )
14 eqid 2443 . . . . . . 7  |-  ( .i
`  W )  =  ( .i `  W
)
15 eqid 2443 . . . . . . 7  |-  ( 0g
`  (Scalar `  W )
)  =  ( 0g
`  (Scalar `  W )
)
1613, 14, 1, 15, 8ip0l 18649 . . . . . 6  |-  ( ( W  e.  PreHil  /\  x  e.  V )  ->  (
( 0g `  W
) ( .i `  W ) x )  =  ( 0g `  (Scalar `  W ) ) )
1711, 12, 16syl2anc 661 . . . . 5  |-  ( ( ( W  e.  PreHil  /\  S  C_  V )  /\  x  e.  S
)  ->  ( ( 0g `  W ) ( .i `  W ) x )  =  ( 0g `  (Scalar `  W ) ) )
1817ralrimiva 2857 . . . 4  |-  ( ( W  e.  PreHil  /\  S  C_  V )  ->  A. x  e.  S  ( ( 0g `  W ) ( .i `  W ) x )  =  ( 0g `  (Scalar `  W ) ) )
191, 14, 13, 15, 2elocv 18677 . . . 4  |-  ( ( 0g `  W )  e.  (  ._|_  `  S
)  <->  ( S  C_  V  /\  ( 0g `  W )  e.  V  /\  A. x  e.  S  ( ( 0g `  W ) ( .i
`  W ) x )  =  ( 0g
`  (Scalar `  W )
) ) )
205, 10, 18, 19syl3anbrc 1181 . . 3  |-  ( ( W  e.  PreHil  /\  S  C_  V )  ->  ( 0g `  W )  e.  (  ._|_  `  S ) )
21 ne0i 3776 . . 3  |-  ( ( 0g `  W )  e.  (  ._|_  `  S
)  ->  (  ._|_  `  S )  =/=  (/) )
2220, 21syl 16 . 2  |-  ( ( W  e.  PreHil  /\  S  C_  V )  ->  (  ._|_  `  S )  =/=  (/) )
235adantr 465 . . . 4  |-  ( ( ( W  e.  PreHil  /\  S  C_  V )  /\  ( r  e.  (
Base `  (Scalar `  W
) )  /\  y  e.  (  ._|_  `  S
)  /\  z  e.  (  ._|_  `  S )
) )  ->  S  C_  V )
247adantr 465 . . . . 5  |-  ( ( ( W  e.  PreHil  /\  S  C_  V )  /\  ( r  e.  (
Base `  (Scalar `  W
) )  /\  y  e.  (  ._|_  `  S
)  /\  z  e.  (  ._|_  `  S )
) )  ->  W  e.  LMod )
25 simpr1 1003 . . . . . 6  |-  ( ( ( W  e.  PreHil  /\  S  C_  V )  /\  ( r  e.  (
Base `  (Scalar `  W
) )  /\  y  e.  (  ._|_  `  S
)  /\  z  e.  (  ._|_  `  S )
) )  ->  r  e.  ( Base `  (Scalar `  W ) ) )
26 simpr2 1004 . . . . . . 7  |-  ( ( ( W  e.  PreHil  /\  S  C_  V )  /\  ( r  e.  (
Base `  (Scalar `  W
) )  /\  y  e.  (  ._|_  `  S
)  /\  z  e.  (  ._|_  `  S )
) )  ->  y  e.  (  ._|_  `  S
) )
273, 26sseldi 3487 . . . . . 6  |-  ( ( ( W  e.  PreHil  /\  S  C_  V )  /\  ( r  e.  (
Base `  (Scalar `  W
) )  /\  y  e.  (  ._|_  `  S
)  /\  z  e.  (  ._|_  `  S )
) )  ->  y  e.  V )
28 eqid 2443 . . . . . . 7  |-  ( .s
`  W )  =  ( .s `  W
)
29 eqid 2443 . . . . . . 7  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
301, 13, 28, 29lmodvscl 17508 . . . . . 6  |-  ( ( W  e.  LMod  /\  r  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  V )  ->  ( r ( .s
`  W ) y )  e.  V )
3124, 25, 27, 30syl3anc 1229 . . . . 5  |-  ( ( ( W  e.  PreHil  /\  S  C_  V )  /\  ( r  e.  (
Base `  (Scalar `  W
) )  /\  y  e.  (  ._|_  `  S
)  /\  z  e.  (  ._|_  `  S )
) )  ->  (
r ( .s `  W ) y )  e.  V )
32 simpr3 1005 . . . . . 6  |-  ( ( ( W  e.  PreHil  /\  S  C_  V )  /\  ( r  e.  (
Base `  (Scalar `  W
) )  /\  y  e.  (  ._|_  `  S
)  /\  z  e.  (  ._|_  `  S )
) )  ->  z  e.  (  ._|_  `  S
) )
333, 32sseldi 3487 . . . . 5  |-  ( ( ( W  e.  PreHil  /\  S  C_  V )  /\  ( r  e.  (
Base `  (Scalar `  W
) )  /\  y  e.  (  ._|_  `  S
)  /\  z  e.  (  ._|_  `  S )
) )  ->  z  e.  V )
34 eqid 2443 . . . . . 6  |-  ( +g  `  W )  =  ( +g  `  W )
351, 34lmodvacl 17505 . . . . 5  |-  ( ( W  e.  LMod  /\  (
r ( .s `  W ) y )  e.  V  /\  z  e.  V )  ->  (
( r ( .s
`  W ) y ) ( +g  `  W
) z )  e.  V )
3624, 31, 33, 35syl3anc 1229 . . . 4  |-  ( ( ( W  e.  PreHil  /\  S  C_  V )  /\  ( r  e.  (
Base `  (Scalar `  W
) )  /\  y  e.  (  ._|_  `  S
)  /\  z  e.  (  ._|_  `  S )
) )  ->  (
( r ( .s
`  W ) y ) ( +g  `  W
) z )  e.  V )
3711adantlr 714 . . . . . . 7  |-  ( ( ( ( W  e. 
PreHil  /\  S  C_  V
)  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  (  ._|_  `  S )  /\  z  e.  (  ._|_  `  S
) ) )  /\  x  e.  S )  ->  W  e.  PreHil )
3831adantr 465 . . . . . . 7  |-  ( ( ( ( W  e. 
PreHil  /\  S  C_  V
)  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  (  ._|_  `  S )  /\  z  e.  (  ._|_  `  S
) ) )  /\  x  e.  S )  ->  ( r ( .s
`  W ) y )  e.  V )
3933adantr 465 . . . . . . 7  |-  ( ( ( ( W  e. 
PreHil  /\  S  C_  V
)  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  (  ._|_  `  S )  /\  z  e.  (  ._|_  `  S
) ) )  /\  x  e.  S )  ->  z  e.  V )
4012adantlr 714 . . . . . . 7  |-  ( ( ( ( W  e. 
PreHil  /\  S  C_  V
)  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  (  ._|_  `  S )  /\  z  e.  (  ._|_  `  S
) ) )  /\  x  e.  S )  ->  x  e.  V )
41 eqid 2443 . . . . . . . 8  |-  ( +g  `  (Scalar `  W )
)  =  ( +g  `  (Scalar `  W )
)
4213, 14, 1, 34, 41ipdir 18652 . . . . . . 7  |-  ( ( W  e.  PreHil  /\  (
( r ( .s
`  W ) y )  e.  V  /\  z  e.  V  /\  x  e.  V )
)  ->  ( (
( r ( .s
`  W ) y ) ( +g  `  W
) z ) ( .i `  W ) x )  =  ( ( ( r ( .s `  W ) y ) ( .i
`  W ) x ) ( +g  `  (Scalar `  W ) ) ( z ( .i `  W ) x ) ) )
4337, 38, 39, 40, 42syl13anc 1231 . . . . . 6  |-  ( ( ( ( W  e. 
PreHil  /\  S  C_  V
)  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  (  ._|_  `  S )  /\  z  e.  (  ._|_  `  S
) ) )  /\  x  e.  S )  ->  ( ( ( r ( .s `  W
) y ) ( +g  `  W ) z ) ( .i
`  W ) x )  =  ( ( ( r ( .s
`  W ) y ) ( .i `  W ) x ) ( +g  `  (Scalar `  W ) ) ( z ( .i `  W ) x ) ) )
4425adantr 465 . . . . . . . . 9  |-  ( ( ( ( W  e. 
PreHil  /\  S  C_  V
)  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  (  ._|_  `  S )  /\  z  e.  (  ._|_  `  S
) ) )  /\  x  e.  S )  ->  r  e.  ( Base `  (Scalar `  W )
) )
4527adantr 465 . . . . . . . . 9  |-  ( ( ( ( W  e. 
PreHil  /\  S  C_  V
)  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  (  ._|_  `  S )  /\  z  e.  (  ._|_  `  S
) ) )  /\  x  e.  S )  ->  y  e.  V )
46 eqid 2443 . . . . . . . . . 10  |-  ( .r
`  (Scalar `  W )
)  =  ( .r
`  (Scalar `  W )
)
4713, 14, 1, 29, 28, 46ipass 18658 . . . . . . . . 9  |-  ( ( W  e.  PreHil  /\  (
r  e.  ( Base `  (Scalar `  W )
)  /\  y  e.  V  /\  x  e.  V
) )  ->  (
( r ( .s
`  W ) y ) ( .i `  W ) x )  =  ( r ( .r `  (Scalar `  W ) ) ( y ( .i `  W ) x ) ) )
4837, 44, 45, 40, 47syl13anc 1231 . . . . . . . 8  |-  ( ( ( ( W  e. 
PreHil  /\  S  C_  V
)  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  (  ._|_  `  S )  /\  z  e.  (  ._|_  `  S
) ) )  /\  x  e.  S )  ->  ( ( r ( .s `  W ) y ) ( .i
`  W ) x )  =  ( r ( .r `  (Scalar `  W ) ) ( y ( .i `  W ) x ) ) )
491, 14, 13, 15, 2ocvi 18678 . . . . . . . . . 10  |-  ( ( y  e.  (  ._|_  `  S )  /\  x  e.  S )  ->  (
y ( .i `  W ) x )  =  ( 0g `  (Scalar `  W ) ) )
5026, 49sylan 471 . . . . . . . . 9  |-  ( ( ( ( W  e. 
PreHil  /\  S  C_  V
)  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  (  ._|_  `  S )  /\  z  e.  (  ._|_  `  S
) ) )  /\  x  e.  S )  ->  ( y ( .i
`  W ) x )  =  ( 0g
`  (Scalar `  W )
) )
5150oveq2d 6297 . . . . . . . 8  |-  ( ( ( ( W  e. 
PreHil  /\  S  C_  V
)  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  (  ._|_  `  S )  /\  z  e.  (  ._|_  `  S
) ) )  /\  x  e.  S )  ->  ( r ( .r
`  (Scalar `  W )
) ( y ( .i `  W ) x ) )  =  ( r ( .r
`  (Scalar `  W )
) ( 0g `  (Scalar `  W ) ) ) )
5224adantr 465 . . . . . . . . . 10  |-  ( ( ( ( W  e. 
PreHil  /\  S  C_  V
)  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  (  ._|_  `  S )  /\  z  e.  (  ._|_  `  S
) ) )  /\  x  e.  S )  ->  W  e.  LMod )
5313lmodring 17499 . . . . . . . . . 10  |-  ( W  e.  LMod  ->  (Scalar `  W )  e.  Ring )
5452, 53syl 16 . . . . . . . . 9  |-  ( ( ( ( W  e. 
PreHil  /\  S  C_  V
)  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  (  ._|_  `  S )  /\  z  e.  (  ._|_  `  S
) ) )  /\  x  e.  S )  ->  (Scalar `  W )  e.  Ring )
5529, 46, 15ringrz 17215 . . . . . . . . 9  |-  ( ( (Scalar `  W )  e.  Ring  /\  r  e.  ( Base `  (Scalar `  W
) ) )  -> 
( r ( .r
`  (Scalar `  W )
) ( 0g `  (Scalar `  W ) ) )  =  ( 0g
`  (Scalar `  W )
) )
5654, 44, 55syl2anc 661 . . . . . . . 8  |-  ( ( ( ( W  e. 
PreHil  /\  S  C_  V
)  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  (  ._|_  `  S )  /\  z  e.  (  ._|_  `  S
) ) )  /\  x  e.  S )  ->  ( r ( .r
`  (Scalar `  W )
) ( 0g `  (Scalar `  W ) ) )  =  ( 0g
`  (Scalar `  W )
) )
5748, 51, 563eqtrd 2488 . . . . . . 7  |-  ( ( ( ( W  e. 
PreHil  /\  S  C_  V
)  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  (  ._|_  `  S )  /\  z  e.  (  ._|_  `  S
) ) )  /\  x  e.  S )  ->  ( ( r ( .s `  W ) y ) ( .i
`  W ) x )  =  ( 0g
`  (Scalar `  W )
) )
581, 14, 13, 15, 2ocvi 18678 . . . . . . . 8  |-  ( ( z  e.  (  ._|_  `  S )  /\  x  e.  S )  ->  (
z ( .i `  W ) x )  =  ( 0g `  (Scalar `  W ) ) )
5932, 58sylan 471 . . . . . . 7  |-  ( ( ( ( W  e. 
PreHil  /\  S  C_  V
)  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  (  ._|_  `  S )  /\  z  e.  (  ._|_  `  S
) ) )  /\  x  e.  S )  ->  ( z ( .i
`  W ) x )  =  ( 0g
`  (Scalar `  W )
) )
6057, 59oveq12d 6299 . . . . . 6  |-  ( ( ( ( W  e. 
PreHil  /\  S  C_  V
)  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  (  ._|_  `  S )  /\  z  e.  (  ._|_  `  S
) ) )  /\  x  e.  S )  ->  ( ( ( r ( .s `  W
) y ) ( .i `  W ) x ) ( +g  `  (Scalar `  W )
) ( z ( .i `  W ) x ) )  =  ( ( 0g `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 0g `  (Scalar `  W ) ) ) )
6113lmodfgrp 17500 . . . . . . 7  |-  ( W  e.  LMod  ->  (Scalar `  W )  e.  Grp )
6229, 15grpidcl 16057 . . . . . . . 8  |-  ( (Scalar `  W )  e.  Grp  ->  ( 0g `  (Scalar `  W ) )  e.  ( Base `  (Scalar `  W ) ) )
6329, 41, 15grplid 16059 . . . . . . . 8  |-  ( ( (Scalar `  W )  e.  Grp  /\  ( 0g
`  (Scalar `  W )
)  e.  ( Base `  (Scalar `  W )
) )  ->  (
( 0g `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 0g `  (Scalar `  W ) ) )  =  ( 0g `  (Scalar `  W ) ) )
6462, 63mpdan 668 . . . . . . 7  |-  ( (Scalar `  W )  e.  Grp  ->  ( ( 0g `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 0g `  (Scalar `  W ) ) )  =  ( 0g `  (Scalar `  W ) ) )
6552, 61, 643syl 20 . . . . . 6  |-  ( ( ( ( W  e. 
PreHil  /\  S  C_  V
)  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  (  ._|_  `  S )  /\  z  e.  (  ._|_  `  S
) ) )  /\  x  e.  S )  ->  ( ( 0g `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 0g `  (Scalar `  W ) ) )  =  ( 0g `  (Scalar `  W ) ) )
6643, 60, 653eqtrd 2488 . . . . 5  |-  ( ( ( ( W  e. 
PreHil  /\  S  C_  V
)  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  (  ._|_  `  S )  /\  z  e.  (  ._|_  `  S
) ) )  /\  x  e.  S )  ->  ( ( ( r ( .s `  W
) y ) ( +g  `  W ) z ) ( .i
`  W ) x )  =  ( 0g
`  (Scalar `  W )
) )
6766ralrimiva 2857 . . . 4  |-  ( ( ( W  e.  PreHil  /\  S  C_  V )  /\  ( r  e.  (
Base `  (Scalar `  W
) )  /\  y  e.  (  ._|_  `  S
)  /\  z  e.  (  ._|_  `  S )
) )  ->  A. x  e.  S  ( (
( r ( .s
`  W ) y ) ( +g  `  W
) z ) ( .i `  W ) x )  =  ( 0g `  (Scalar `  W ) ) )
681, 14, 13, 15, 2elocv 18677 . . . 4  |-  ( ( ( r ( .s
`  W ) y ) ( +g  `  W
) z )  e.  (  ._|_  `  S )  <-> 
( S  C_  V  /\  ( ( r ( .s `  W ) y ) ( +g  `  W ) z )  e.  V  /\  A. x  e.  S  (
( ( r ( .s `  W ) y ) ( +g  `  W ) z ) ( .i `  W
) x )  =  ( 0g `  (Scalar `  W ) ) ) )
6923, 36, 67, 68syl3anbrc 1181 . . 3  |-  ( ( ( W  e.  PreHil  /\  S  C_  V )  /\  ( r  e.  (
Base `  (Scalar `  W
) )  /\  y  e.  (  ._|_  `  S
)  /\  z  e.  (  ._|_  `  S )
) )  ->  (
( r ( .s
`  W ) y ) ( +g  `  W
) z )  e.  (  ._|_  `  S ) )
7069ralrimivvva 2865 . 2  |-  ( ( W  e.  PreHil  /\  S  C_  V )  ->  A. r  e.  ( Base `  (Scalar `  W ) ) A. y  e.  (  ._|_  `  S ) A. z  e.  (  ._|_  `  S
) ( ( r ( .s `  W
) y ) ( +g  `  W ) z )  e.  ( 
._|_  `  S ) )
71 ocvlss.l . . 3  |-  L  =  ( LSubSp `  W )
7213, 29, 1, 34, 28, 71islss 17560 . 2  |-  ( ( 
._|_  `  S )  e.  L  <->  ( (  ._|_  `  S )  C_  V  /\  (  ._|_  `  S
)  =/=  (/)  /\  A. r  e.  ( Base `  (Scalar `  W )
) A. y  e.  (  ._|_  `  S ) A. z  e.  ( 
._|_  `  S ) ( ( r ( .s
`  W ) y ) ( +g  `  W
) z )  e.  (  ._|_  `  S ) ) )
734, 22, 70, 72syl3anbrc 1181 1  |-  ( ( W  e.  PreHil  /\  S  C_  V )  ->  (  ._|_  `  S )  e.  L )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 974    = wceq 1383    e. wcel 1804    =/= wne 2638   A.wral 2793    C_ wss 3461   (/)c0 3770   ` cfv 5578  (class class class)co 6281   Basecbs 14614   +g cplusg 14679   .rcmulr 14680  Scalarcsca 14682   .scvsca 14683   .icip 14684   0gc0g 14819   Grpcgrp 16032   Ringcrg 17177   LModclmod 17491   LSubSpclss 17557   PreHilcphl 18637   ocvcocv 18669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-recs 7044  df-rdg 7078  df-er 7313  df-en 7519  df-dom 7520  df-sdom 7521  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-nn 10544  df-2 10601  df-3 10602  df-4 10603  df-5 10604  df-6 10605  df-7 10606  df-8 10607  df-ndx 14617  df-slot 14618  df-base 14619  df-sets 14620  df-plusg 14692  df-sca 14695  df-vsca 14696  df-ip 14697  df-0g 14821  df-mgm 15851  df-sgrp 15890  df-mnd 15900  df-grp 16036  df-ghm 16244  df-mgp 17121  df-ring 17179  df-lmod 17493  df-lss 17558  df-lmhm 17647  df-lvec 17728  df-sra 17797  df-rgmod 17798  df-phl 18639  df-ocv 18672
This theorem is referenced by:  ocvin  18683  ocvlsp  18685  csslss  18700  pjdm2  18720  pjff  18721  pjf2  18723  pjfo  18724  ocvpj  18726  pjthlem2  21831  pjth  21832
  Copyright terms: Public domain W3C validator