MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ocvin Structured version   Unicode version

Theorem ocvin 18467
Description: An orthocomplement has trivial intersection with the original subspace. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
ocv2ss.o  |-  ._|_  =  ( ocv `  W )
ocvin.l  |-  L  =  ( LSubSp `  W )
ocvin.z  |-  .0.  =  ( 0g `  W )
Assertion
Ref Expression
ocvin  |-  ( ( W  e.  PreHil  /\  S  e.  L )  ->  ( S  i^i  (  ._|_  `  S
) )  =  {  .0.  } )

Proof of Theorem ocvin
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqid 2462 . . . . . . . . 9  |-  ( Base `  W )  =  (
Base `  W )
2 eqid 2462 . . . . . . . . 9  |-  ( .i
`  W )  =  ( .i `  W
)
3 eqid 2462 . . . . . . . . 9  |-  (Scalar `  W )  =  (Scalar `  W )
4 eqid 2462 . . . . . . . . 9  |-  ( 0g
`  (Scalar `  W )
)  =  ( 0g
`  (Scalar `  W )
)
5 ocv2ss.o . . . . . . . . 9  |-  ._|_  =  ( ocv `  W )
61, 2, 3, 4, 5ocvi 18462 . . . . . . . 8  |-  ( ( x  e.  (  ._|_  `  S )  /\  x  e.  S )  ->  (
x ( .i `  W ) x )  =  ( 0g `  (Scalar `  W ) ) )
76ancoms 453 . . . . . . 7  |-  ( ( x  e.  S  /\  x  e.  (  ._|_  `  S ) )  -> 
( x ( .i
`  W ) x )  =  ( 0g
`  (Scalar `  W )
) )
87adantl 466 . . . . . 6  |-  ( ( ( W  e.  PreHil  /\  S  e.  L )  /\  ( x  e.  S  /\  x  e.  (  ._|_  `  S ) ) )  ->  (
x ( .i `  W ) x )  =  ( 0g `  (Scalar `  W ) ) )
9 simpll 753 . . . . . . 7  |-  ( ( ( W  e.  PreHil  /\  S  e.  L )  /\  ( x  e.  S  /\  x  e.  (  ._|_  `  S ) ) )  ->  W  e.  PreHil )
10 ocvin.l . . . . . . . . 9  |-  L  =  ( LSubSp `  W )
111, 10lssel 17362 . . . . . . . 8  |-  ( ( S  e.  L  /\  x  e.  S )  ->  x  e.  ( Base `  W ) )
1211ad2ant2lr 747 . . . . . . 7  |-  ( ( ( W  e.  PreHil  /\  S  e.  L )  /\  ( x  e.  S  /\  x  e.  (  ._|_  `  S ) ) )  ->  x  e.  ( Base `  W
) )
13 ocvin.z . . . . . . . 8  |-  .0.  =  ( 0g `  W )
143, 2, 1, 4, 13ipeq0 18435 . . . . . . 7  |-  ( ( W  e.  PreHil  /\  x  e.  ( Base `  W
) )  ->  (
( x ( .i
`  W ) x )  =  ( 0g
`  (Scalar `  W )
)  <->  x  =  .0.  ) )
159, 12, 14syl2anc 661 . . . . . 6  |-  ( ( ( W  e.  PreHil  /\  S  e.  L )  /\  ( x  e.  S  /\  x  e.  (  ._|_  `  S ) ) )  ->  (
( x ( .i
`  W ) x )  =  ( 0g
`  (Scalar `  W )
)  <->  x  =  .0.  ) )
168, 15mpbid 210 . . . . 5  |-  ( ( ( W  e.  PreHil  /\  S  e.  L )  /\  ( x  e.  S  /\  x  e.  (  ._|_  `  S ) ) )  ->  x  =  .0.  )
1716ex 434 . . . 4  |-  ( ( W  e.  PreHil  /\  S  e.  L )  ->  (
( x  e.  S  /\  x  e.  (  ._|_  `  S ) )  ->  x  =  .0.  ) )
18 elin 3682 . . . 4  |-  ( x  e.  ( S  i^i  (  ._|_  `  S )
)  <->  ( x  e.  S  /\  x  e.  (  ._|_  `  S ) ) )
19 elsn 4036 . . . 4  |-  ( x  e.  {  .0.  }  <->  x  =  .0.  )
2017, 18, 193imtr4g 270 . . 3  |-  ( ( W  e.  PreHil  /\  S  e.  L )  ->  (
x  e.  ( S  i^i  (  ._|_  `  S
) )  ->  x  e.  {  .0.  } ) )
2120ssrdv 3505 . 2  |-  ( ( W  e.  PreHil  /\  S  e.  L )  ->  ( S  i^i  (  ._|_  `  S
) )  C_  {  .0.  } )
22 phllmod 18427 . . . 4  |-  ( W  e.  PreHil  ->  W  e.  LMod )
2322adantr 465 . . 3  |-  ( ( W  e.  PreHil  /\  S  e.  L )  ->  W  e.  LMod )
241, 10lssss 17361 . . . . 5  |-  ( S  e.  L  ->  S  C_  ( Base `  W
) )
251, 5, 10ocvlss 18465 . . . . 5  |-  ( ( W  e.  PreHil  /\  S  C_  ( Base `  W
) )  ->  (  ._|_  `  S )  e.  L )
2624, 25sylan2 474 . . . 4  |-  ( ( W  e.  PreHil  /\  S  e.  L )  ->  (  ._|_  `  S )  e.  L )
2710lssincl 17389 . . . . 5  |-  ( ( W  e.  LMod  /\  S  e.  L  /\  (  ._|_  `  S )  e.  L )  ->  ( S  i^i  (  ._|_  `  S
) )  e.  L
)
2822, 27syl3an1 1256 . . . 4  |-  ( ( W  e.  PreHil  /\  S  e.  L  /\  (  ._|_  `  S )  e.  L )  ->  ( S  i^i  (  ._|_  `  S
) )  e.  L
)
2926, 28mpd3an3 1320 . . 3  |-  ( ( W  e.  PreHil  /\  S  e.  L )  ->  ( S  i^i  (  ._|_  `  S
) )  e.  L
)
3013, 10lss0ss 17373 . . 3  |-  ( ( W  e.  LMod  /\  ( S  i^i  (  ._|_  `  S
) )  e.  L
)  ->  {  .0.  } 
C_  ( S  i^i  (  ._|_  `  S )
) )
3123, 29, 30syl2anc 661 . 2  |-  ( ( W  e.  PreHil  /\  S  e.  L )  ->  {  .0.  } 
C_  ( S  i^i  (  ._|_  `  S )
) )
3221, 31eqssd 3516 1  |-  ( ( W  e.  PreHil  /\  S  e.  L )  ->  ( S  i^i  (  ._|_  `  S
) )  =  {  .0.  } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1374    e. wcel 1762    i^i cin 3470    C_ wss 3471   {csn 4022   ` cfv 5581  (class class class)co 6277   Basecbs 14481  Scalarcsca 14549   .icip 14551   0gc0g 14686   LModclmod 17290   LSubSpclss 17356   PreHilcphl 18421   ocvcocv 18453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-rep 4553  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569  ax-cnex 9539  ax-resscn 9540  ax-1cn 9541  ax-icn 9542  ax-addcl 9543  ax-addrcl 9544  ax-mulcl 9545  ax-mulrcl 9546  ax-mulcom 9547  ax-addass 9548  ax-mulass 9549  ax-distr 9550  ax-i2m1 9551  ax-1ne0 9552  ax-1rid 9553  ax-rnegex 9554  ax-rrecex 9555  ax-cnre 9556  ax-pre-lttri 9557  ax-pre-lttrn 9558  ax-pre-ltadd 9559  ax-pre-mulgt0 9560
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-nel 2660  df-ral 2814  df-rex 2815  df-reu 2816  df-rmo 2817  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-tp 4027  df-op 4029  df-uni 4241  df-int 4278  df-iun 4322  df-br 4443  df-opab 4501  df-mpt 4502  df-tr 4536  df-eprel 4786  df-id 4790  df-po 4795  df-so 4796  df-fr 4833  df-we 4835  df-ord 4876  df-on 4877  df-lim 4878  df-suc 4879  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6674  df-1st 6776  df-2nd 6777  df-recs 7034  df-rdg 7068  df-er 7303  df-en 7509  df-dom 7510  df-sdom 7511  df-pnf 9621  df-mnf 9622  df-xr 9623  df-ltxr 9624  df-le 9625  df-sub 9798  df-neg 9799  df-nn 10528  df-2 10585  df-3 10586  df-4 10587  df-5 10588  df-6 10589  df-7 10590  df-8 10591  df-ndx 14484  df-slot 14485  df-base 14486  df-sets 14487  df-plusg 14559  df-sca 14562  df-vsca 14563  df-ip 14564  df-0g 14688  df-mnd 15723  df-grp 15853  df-minusg 15854  df-sbg 15855  df-ghm 16055  df-mgp 16927  df-ur 16939  df-rng 16983  df-lmod 17292  df-lss 17357  df-lmhm 17446  df-lvec 17527  df-sra 17596  df-rgmod 17597  df-phl 18423  df-ocv 18456
This theorem is referenced by:  ocv1  18472  pjdm2  18504  pjff  18505  pjf2  18507  pjfo  18508  obselocv  18521
  Copyright terms: Public domain W3C validator