HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ocsh Structured version   Visualization version   Unicode version

Theorem ocsh 26936
Description: The orthogonal complement of a subspace is a subspace. Part of Remark 3.12 of [Beran] p. 107. (Contributed by NM, 7-Aug-2000.) (New usage is discouraged.)
Assertion
Ref Expression
ocsh  |-  ( A 
C_  ~H  ->  ( _|_ `  A )  e.  SH )

Proof of Theorem ocsh
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ocval 26933 . . . 4  |-  ( A 
C_  ~H  ->  ( _|_ `  A )  =  {
x  e.  ~H  |  A. y  e.  A  ( x  .ih  y )  =  0 } )
2 ssrab2 3514 . . . 4  |-  { x  e.  ~H  |  A. y  e.  A  ( x  .ih  y )  =  0 }  C_  ~H
31, 2syl6eqss 3482 . . 3  |-  ( A 
C_  ~H  ->  ( _|_ `  A )  C_  ~H )
4 ssel 3426 . . . . . . 7  |-  ( A 
C_  ~H  ->  ( y  e.  A  ->  y  e.  ~H ) )
5 hi01 26749 . . . . . . 7  |-  ( y  e.  ~H  ->  ( 0h  .ih  y )  =  0 )
64, 5syl6 34 . . . . . 6  |-  ( A 
C_  ~H  ->  ( y  e.  A  ->  ( 0h  .ih  y )  =  0 ) )
76ralrimiv 2800 . . . . 5  |-  ( A 
C_  ~H  ->  A. y  e.  A  ( 0h  .ih  y )  =  0 )
8 ax-hv0cl 26656 . . . . 5  |-  0h  e.  ~H
97, 8jctil 540 . . . 4  |-  ( A 
C_  ~H  ->  ( 0h  e.  ~H  /\  A. y  e.  A  ( 0h  .ih  y )  =  0 ) )
10 ocel 26934 . . . 4  |-  ( A 
C_  ~H  ->  ( 0h  e.  ( _|_ `  A
)  <->  ( 0h  e.  ~H  /\  A. y  e.  A  ( 0h  .ih  y )  =  0 ) ) )
119, 10mpbird 236 . . 3  |-  ( A 
C_  ~H  ->  0h  e.  ( _|_ `  A ) )
123, 11jca 535 . 2  |-  ( A 
C_  ~H  ->  ( ( _|_ `  A ) 
C_  ~H  /\  0h  e.  ( _|_ `  A ) ) )
13 ssel2 3427 . . . . . . . . . 10  |-  ( ( A  C_  ~H  /\  z  e.  A )  ->  z  e.  ~H )
14 ax-his2 26736 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ~H  /\  y  e.  ~H  /\  z  e.  ~H )  ->  (
( x  +h  y
)  .ih  z )  =  ( ( x 
.ih  z )  +  ( y  .ih  z
) ) )
15143expa 1208 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  ~H  /\  y  e.  ~H )  /\  z  e.  ~H )  ->  ( ( x  +h  y )  .ih  z )  =  ( ( x  .ih  z
)  +  ( y 
.ih  z ) ) )
16 oveq12 6299 . . . . . . . . . . . . . 14  |-  ( ( ( x  .ih  z
)  =  0  /\  ( y  .ih  z
)  =  0 )  ->  ( ( x 
.ih  z )  +  ( y  .ih  z
) )  =  ( 0  +  0 ) )
17 00id 9808 . . . . . . . . . . . . . 14  |-  ( 0  +  0 )  =  0
1816, 17syl6eq 2501 . . . . . . . . . . . . 13  |-  ( ( ( x  .ih  z
)  =  0  /\  ( y  .ih  z
)  =  0 )  ->  ( ( x 
.ih  z )  +  ( y  .ih  z
) )  =  0 )
1915, 18sylan9eq 2505 . . . . . . . . . . . 12  |-  ( ( ( ( x  e. 
~H  /\  y  e.  ~H )  /\  z  e.  ~H )  /\  (
( x  .ih  z
)  =  0  /\  ( y  .ih  z
)  =  0 ) )  ->  ( (
x  +h  y ) 
.ih  z )  =  0 )
2019ex 436 . . . . . . . . . . 11  |-  ( ( ( x  e.  ~H  /\  y  e.  ~H )  /\  z  e.  ~H )  ->  ( ( ( x  .ih  z )  =  0  /\  (
y  .ih  z )  =  0 )  -> 
( ( x  +h  y )  .ih  z
)  =  0 ) )
2120ancoms 455 . . . . . . . . . 10  |-  ( ( z  e.  ~H  /\  ( x  e.  ~H  /\  y  e.  ~H )
)  ->  ( (
( x  .ih  z
)  =  0  /\  ( y  .ih  z
)  =  0 )  ->  ( ( x  +h  y )  .ih  z )  =  0 ) )
2213, 21sylan 474 . . . . . . . . 9  |-  ( ( ( A  C_  ~H  /\  z  e.  A )  /\  ( x  e. 
~H  /\  y  e.  ~H ) )  ->  (
( ( x  .ih  z )  =  0  /\  ( y  .ih  z )  =  0 )  ->  ( (
x  +h  y ) 
.ih  z )  =  0 ) )
2322an32s 813 . . . . . . . 8  |-  ( ( ( A  C_  ~H  /\  ( x  e.  ~H  /\  y  e.  ~H )
)  /\  z  e.  A )  ->  (
( ( x  .ih  z )  =  0  /\  ( y  .ih  z )  =  0 )  ->  ( (
x  +h  y ) 
.ih  z )  =  0 ) )
2423ralimdva 2796 . . . . . . 7  |-  ( ( A  C_  ~H  /\  (
x  e.  ~H  /\  y  e.  ~H )
)  ->  ( A. z  e.  A  (
( x  .ih  z
)  =  0  /\  ( y  .ih  z
)  =  0 )  ->  A. z  e.  A  ( ( x  +h  y )  .ih  z
)  =  0 ) )
2524imdistanda 699 . . . . . 6  |-  ( A 
C_  ~H  ->  ( ( ( x  e.  ~H  /\  y  e.  ~H )  /\  A. z  e.  A  ( ( x  .ih  z )  =  0  /\  ( y  .ih  z )  =  0 ) )  ->  (
( x  e.  ~H  /\  y  e.  ~H )  /\  A. z  e.  A  ( ( x  +h  y )  .ih  z
)  =  0 ) ) )
26 hvaddcl 26665 . . . . . . 7  |-  ( ( x  e.  ~H  /\  y  e.  ~H )  ->  ( x  +h  y
)  e.  ~H )
2726anim1i 572 . . . . . 6  |-  ( ( ( x  e.  ~H  /\  y  e.  ~H )  /\  A. z  e.  A  ( ( x  +h  y )  .ih  z
)  =  0 )  ->  ( ( x  +h  y )  e. 
~H  /\  A. z  e.  A  ( (
x  +h  y ) 
.ih  z )  =  0 ) )
2825, 27syl6 34 . . . . 5  |-  ( A 
C_  ~H  ->  ( ( ( x  e.  ~H  /\  y  e.  ~H )  /\  A. z  e.  A  ( ( x  .ih  z )  =  0  /\  ( y  .ih  z )  =  0 ) )  ->  (
( x  +h  y
)  e.  ~H  /\  A. z  e.  A  ( ( x  +h  y
)  .ih  z )  =  0 ) ) )
29 ocel 26934 . . . . . . 7  |-  ( A 
C_  ~H  ->  ( x  e.  ( _|_ `  A
)  <->  ( x  e. 
~H  /\  A. z  e.  A  ( x  .ih  z )  =  0 ) ) )
30 ocel 26934 . . . . . . 7  |-  ( A 
C_  ~H  ->  ( y  e.  ( _|_ `  A
)  <->  ( y  e. 
~H  /\  A. z  e.  A  ( y  .ih  z )  =  0 ) ) )
3129, 30anbi12d 717 . . . . . 6  |-  ( A 
C_  ~H  ->  ( ( x  e.  ( _|_ `  A )  /\  y  e.  ( _|_ `  A
) )  <->  ( (
x  e.  ~H  /\  A. z  e.  A  ( x  .ih  z )  =  0 )  /\  ( y  e.  ~H  /\ 
A. z  e.  A  ( y  .ih  z
)  =  0 ) ) ) )
32 an4 833 . . . . . . 7  |-  ( ( ( x  e.  ~H  /\ 
A. z  e.  A  ( x  .ih  z )  =  0 )  /\  ( y  e.  ~H  /\ 
A. z  e.  A  ( y  .ih  z
)  =  0 ) )  <->  ( ( x  e.  ~H  /\  y  e.  ~H )  /\  ( A. z  e.  A  ( x  .ih  z )  =  0  /\  A. z  e.  A  (
y  .ih  z )  =  0 ) ) )
33 r19.26 2917 . . . . . . . 8  |-  ( A. z  e.  A  (
( x  .ih  z
)  =  0  /\  ( y  .ih  z
)  =  0 )  <-> 
( A. z  e.  A  ( x  .ih  z )  =  0  /\  A. z  e.  A  ( y  .ih  z )  =  0 ) )
3433anbi2i 700 . . . . . . 7  |-  ( ( ( x  e.  ~H  /\  y  e.  ~H )  /\  A. z  e.  A  ( ( x  .ih  z )  =  0  /\  ( y  .ih  z )  =  0 ) )  <->  ( (
x  e.  ~H  /\  y  e.  ~H )  /\  ( A. z  e.  A  ( x  .ih  z )  =  0  /\  A. z  e.  A  ( y  .ih  z )  =  0 ) ) )
3532, 34bitr4i 256 . . . . . 6  |-  ( ( ( x  e.  ~H  /\ 
A. z  e.  A  ( x  .ih  z )  =  0 )  /\  ( y  e.  ~H  /\ 
A. z  e.  A  ( y  .ih  z
)  =  0 ) )  <->  ( ( x  e.  ~H  /\  y  e.  ~H )  /\  A. z  e.  A  (
( x  .ih  z
)  =  0  /\  ( y  .ih  z
)  =  0 ) ) )
3631, 35syl6bb 265 . . . . 5  |-  ( A 
C_  ~H  ->  ( ( x  e.  ( _|_ `  A )  /\  y  e.  ( _|_ `  A
) )  <->  ( (
x  e.  ~H  /\  y  e.  ~H )  /\  A. z  e.  A  ( ( x  .ih  z )  =  0  /\  ( y  .ih  z )  =  0 ) ) ) )
37 ocel 26934 . . . . 5  |-  ( A 
C_  ~H  ->  ( ( x  +h  y )  e.  ( _|_ `  A
)  <->  ( ( x  +h  y )  e. 
~H  /\  A. z  e.  A  ( (
x  +h  y ) 
.ih  z )  =  0 ) ) )
3828, 36, 373imtr4d 272 . . . 4  |-  ( A 
C_  ~H  ->  ( ( x  e.  ( _|_ `  A )  /\  y  e.  ( _|_ `  A
) )  ->  (
x  +h  y )  e.  ( _|_ `  A
) ) )
3938ralrimivv 2808 . . 3  |-  ( A 
C_  ~H  ->  A. x  e.  ( _|_ `  A
) A. y  e.  ( _|_ `  A
) ( x  +h  y )  e.  ( _|_ `  A ) )
40 mul01 9812 . . . . . . . . . . . . 13  |-  ( x  e.  CC  ->  (
x  x.  0 )  =  0 )
41 oveq2 6298 . . . . . . . . . . . . . 14  |-  ( ( y  .ih  z )  =  0  ->  (
x  x.  ( y 
.ih  z ) )  =  ( x  x.  0 ) )
4241eqeq1d 2453 . . . . . . . . . . . . 13  |-  ( ( y  .ih  z )  =  0  ->  (
( x  x.  (
y  .ih  z )
)  =  0  <->  (
x  x.  0 )  =  0 ) )
4340, 42syl5ibrcom 226 . . . . . . . . . . . 12  |-  ( x  e.  CC  ->  (
( y  .ih  z
)  =  0  -> 
( x  x.  (
y  .ih  z )
)  =  0 ) )
4443ad2antrl 734 . . . . . . . . . . 11  |-  ( ( z  e.  ~H  /\  ( x  e.  CC  /\  y  e.  ~H )
)  ->  ( (
y  .ih  z )  =  0  ->  (
x  x.  ( y 
.ih  z ) )  =  0 ) )
45 ax-his3 26737 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CC  /\  y  e.  ~H  /\  z  e.  ~H )  ->  (
( x  .h  y
)  .ih  z )  =  ( x  x.  ( y  .ih  z
) ) )
4645eqeq1d 2453 . . . . . . . . . . . . 13  |-  ( ( x  e.  CC  /\  y  e.  ~H  /\  z  e.  ~H )  ->  (
( ( x  .h  y )  .ih  z
)  =  0  <->  (
x  x.  ( y 
.ih  z ) )  =  0 ) )
47463expa 1208 . . . . . . . . . . . 12  |-  ( ( ( x  e.  CC  /\  y  e.  ~H )  /\  z  e.  ~H )  ->  ( ( ( x  .h  y ) 
.ih  z )  =  0  <->  ( x  x.  ( y  .ih  z
) )  =  0 ) )
4847ancoms 455 . . . . . . . . . . 11  |-  ( ( z  e.  ~H  /\  ( x  e.  CC  /\  y  e.  ~H )
)  ->  ( (
( x  .h  y
)  .ih  z )  =  0  <->  ( x  x.  ( y  .ih  z
) )  =  0 ) )
4944, 48sylibrd 238 . . . . . . . . . 10  |-  ( ( z  e.  ~H  /\  ( x  e.  CC  /\  y  e.  ~H )
)  ->  ( (
y  .ih  z )  =  0  ->  (
( x  .h  y
)  .ih  z )  =  0 ) )
5013, 49sylan 474 . . . . . . . . 9  |-  ( ( ( A  C_  ~H  /\  z  e.  A )  /\  ( x  e.  CC  /\  y  e. 
~H ) )  -> 
( ( y  .ih  z )  =  0  ->  ( ( x  .h  y )  .ih  z )  =  0 ) )
5150an32s 813 . . . . . . . 8  |-  ( ( ( A  C_  ~H  /\  ( x  e.  CC  /\  y  e.  ~H )
)  /\  z  e.  A )  ->  (
( y  .ih  z
)  =  0  -> 
( ( x  .h  y )  .ih  z
)  =  0 ) )
5251ralimdva 2796 . . . . . . 7  |-  ( ( A  C_  ~H  /\  (
x  e.  CC  /\  y  e.  ~H )
)  ->  ( A. z  e.  A  (
y  .ih  z )  =  0  ->  A. z  e.  A  ( (
x  .h  y ) 
.ih  z )  =  0 ) )
5352imdistanda 699 . . . . . 6  |-  ( A 
C_  ~H  ->  ( ( ( x  e.  CC  /\  y  e.  ~H )  /\  A. z  e.  A  ( y  .ih  z
)  =  0 )  ->  ( ( x  e.  CC  /\  y  e.  ~H )  /\  A. z  e.  A  (
( x  .h  y
)  .ih  z )  =  0 ) ) )
54 hvmulcl 26666 . . . . . . 7  |-  ( ( x  e.  CC  /\  y  e.  ~H )  ->  ( x  .h  y
)  e.  ~H )
5554anim1i 572 . . . . . 6  |-  ( ( ( x  e.  CC  /\  y  e.  ~H )  /\  A. z  e.  A  ( ( x  .h  y )  .ih  z
)  =  0 )  ->  ( ( x  .h  y )  e. 
~H  /\  A. z  e.  A  ( (
x  .h  y ) 
.ih  z )  =  0 ) )
5653, 55syl6 34 . . . . 5  |-  ( A 
C_  ~H  ->  ( ( ( x  e.  CC  /\  y  e.  ~H )  /\  A. z  e.  A  ( y  .ih  z
)  =  0 )  ->  ( ( x  .h  y )  e. 
~H  /\  A. z  e.  A  ( (
x  .h  y ) 
.ih  z )  =  0 ) ) )
5730anbi2d 710 . . . . . 6  |-  ( A 
C_  ~H  ->  ( ( x  e.  CC  /\  y  e.  ( _|_ `  A ) )  <->  ( x  e.  CC  /\  ( y  e.  ~H  /\  A. z  e.  A  (
y  .ih  z )  =  0 ) ) ) )
58 anass 655 . . . . . 6  |-  ( ( ( x  e.  CC  /\  y  e.  ~H )  /\  A. z  e.  A  ( y  .ih  z
)  =  0 )  <-> 
( x  e.  CC  /\  ( y  e.  ~H  /\ 
A. z  e.  A  ( y  .ih  z
)  =  0 ) ) )
5957, 58syl6bbr 267 . . . . 5  |-  ( A 
C_  ~H  ->  ( ( x  e.  CC  /\  y  e.  ( _|_ `  A ) )  <->  ( (
x  e.  CC  /\  y  e.  ~H )  /\  A. z  e.  A  ( y  .ih  z
)  =  0 ) ) )
60 ocel 26934 . . . . 5  |-  ( A 
C_  ~H  ->  ( ( x  .h  y )  e.  ( _|_ `  A
)  <->  ( ( x  .h  y )  e. 
~H  /\  A. z  e.  A  ( (
x  .h  y ) 
.ih  z )  =  0 ) ) )
6156, 59, 603imtr4d 272 . . . 4  |-  ( A 
C_  ~H  ->  ( ( x  e.  CC  /\  y  e.  ( _|_ `  A ) )  -> 
( x  .h  y
)  e.  ( _|_ `  A ) ) )
6261ralrimivv 2808 . . 3  |-  ( A 
C_  ~H  ->  A. x  e.  CC  A. y  e.  ( _|_ `  A
) ( x  .h  y )  e.  ( _|_ `  A ) )
6339, 62jca 535 . 2  |-  ( A 
C_  ~H  ->  ( A. x  e.  ( _|_ `  A ) A. y  e.  ( _|_ `  A
) ( x  +h  y )  e.  ( _|_ `  A )  /\  A. x  e.  CC  A. y  e.  ( _|_ `  A
) ( x  .h  y )  e.  ( _|_ `  A ) ) )
64 issh2 26862 . 2  |-  ( ( _|_ `  A )  e.  SH  <->  ( (
( _|_ `  A
)  C_  ~H  /\  0h  e.  ( _|_ `  A
) )  /\  ( A. x  e.  ( _|_ `  A ) A. y  e.  ( _|_ `  A ) ( x  +h  y )  e.  ( _|_ `  A
)  /\  A. x  e.  CC  A. y  e.  ( _|_ `  A
) ( x  .h  y )  e.  ( _|_ `  A ) ) ) )
6512, 63, 64sylanbrc 670 1  |-  ( A 
C_  ~H  ->  ( _|_ `  A )  e.  SH )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 985    = wceq 1444    e. wcel 1887   A.wral 2737   {crab 2741    C_ wss 3404   ` cfv 5582  (class class class)co 6290   CCcc 9537   0cc0 9539    + caddc 9542    x. cmul 9544   ~Hchil 26572    +h cva 26573    .h csm 26574    .ih csp 26575   0hc0v 26577   SHcsh 26581   _|_cort 26583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-hilex 26652  ax-hfvadd 26653  ax-hv0cl 26656  ax-hfvmul 26658  ax-hvmul0 26663  ax-hfi 26732  ax-his2 26736  ax-his3 26737
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-op 3975  df-uni 4199  df-iun 4280  df-br 4403  df-opab 4462  df-mpt 4463  df-id 4749  df-po 4755  df-so 4756  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-ov 6293  df-er 7363  df-en 7570  df-dom 7571  df-sdom 7572  df-pnf 9677  df-mnf 9678  df-ltxr 9680  df-sh 26860  df-oc 26905
This theorem is referenced by:  shocsh  26937  ocss  26938  occl  26957  spanssoc  27002  ssjo  27100  chscllem2  27291
  Copyright terms: Public domain W3C validator