HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ocsh Structured version   Unicode version

Theorem ocsh 24858
Description: The orthogonal complement of a subspace is a subspace. Part of Remark 3.12 of [Beran] p. 107. (Contributed by NM, 7-Aug-2000.) (New usage is discouraged.)
Assertion
Ref Expression
ocsh  |-  ( A 
C_  ~H  ->  ( _|_ `  A )  e.  SH )

Proof of Theorem ocsh
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ocval 24855 . . . 4  |-  ( A 
C_  ~H  ->  ( _|_ `  A )  =  {
x  e.  ~H  |  A. y  e.  A  ( x  .ih  y )  =  0 } )
2 ssrab2 3548 . . . 4  |-  { x  e.  ~H  |  A. y  e.  A  ( x  .ih  y )  =  0 }  C_  ~H
31, 2syl6eqss 3517 . . 3  |-  ( A 
C_  ~H  ->  ( _|_ `  A )  C_  ~H )
4 ssel 3461 . . . . . . 7  |-  ( A 
C_  ~H  ->  ( y  e.  A  ->  y  e.  ~H ) )
5 hi01 24670 . . . . . . 7  |-  ( y  e.  ~H  ->  ( 0h  .ih  y )  =  0 )
64, 5syl6 33 . . . . . 6  |-  ( A 
C_  ~H  ->  ( y  e.  A  ->  ( 0h  .ih  y )  =  0 ) )
76ralrimiv 2828 . . . . 5  |-  ( A 
C_  ~H  ->  A. y  e.  A  ( 0h  .ih  y )  =  0 )
8 ax-hv0cl 24577 . . . . 5  |-  0h  e.  ~H
97, 8jctil 537 . . . 4  |-  ( A 
C_  ~H  ->  ( 0h  e.  ~H  /\  A. y  e.  A  ( 0h  .ih  y )  =  0 ) )
10 ocel 24856 . . . 4  |-  ( A 
C_  ~H  ->  ( 0h  e.  ( _|_ `  A
)  <->  ( 0h  e.  ~H  /\  A. y  e.  A  ( 0h  .ih  y )  =  0 ) ) )
119, 10mpbird 232 . . 3  |-  ( A 
C_  ~H  ->  0h  e.  ( _|_ `  A ) )
123, 11jca 532 . 2  |-  ( A 
C_  ~H  ->  ( ( _|_ `  A ) 
C_  ~H  /\  0h  e.  ( _|_ `  A ) ) )
13 ssel2 3462 . . . . . . . . . 10  |-  ( ( A  C_  ~H  /\  z  e.  A )  ->  z  e.  ~H )
14 ax-his2 24657 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ~H  /\  y  e.  ~H  /\  z  e.  ~H )  ->  (
( x  +h  y
)  .ih  z )  =  ( ( x 
.ih  z )  +  ( y  .ih  z
) ) )
15143expa 1188 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  ~H  /\  y  e.  ~H )  /\  z  e.  ~H )  ->  ( ( x  +h  y )  .ih  z )  =  ( ( x  .ih  z
)  +  ( y 
.ih  z ) ) )
16 oveq12 6212 . . . . . . . . . . . . . 14  |-  ( ( ( x  .ih  z
)  =  0  /\  ( y  .ih  z
)  =  0 )  ->  ( ( x 
.ih  z )  +  ( y  .ih  z
) )  =  ( 0  +  0 ) )
17 00id 9658 . . . . . . . . . . . . . 14  |-  ( 0  +  0 )  =  0
1816, 17syl6eq 2511 . . . . . . . . . . . . 13  |-  ( ( ( x  .ih  z
)  =  0  /\  ( y  .ih  z
)  =  0 )  ->  ( ( x 
.ih  z )  +  ( y  .ih  z
) )  =  0 )
1915, 18sylan9eq 2515 . . . . . . . . . . . 12  |-  ( ( ( ( x  e. 
~H  /\  y  e.  ~H )  /\  z  e.  ~H )  /\  (
( x  .ih  z
)  =  0  /\  ( y  .ih  z
)  =  0 ) )  ->  ( (
x  +h  y ) 
.ih  z )  =  0 )
2019ex 434 . . . . . . . . . . 11  |-  ( ( ( x  e.  ~H  /\  y  e.  ~H )  /\  z  e.  ~H )  ->  ( ( ( x  .ih  z )  =  0  /\  (
y  .ih  z )  =  0 )  -> 
( ( x  +h  y )  .ih  z
)  =  0 ) )
2120ancoms 453 . . . . . . . . . 10  |-  ( ( z  e.  ~H  /\  ( x  e.  ~H  /\  y  e.  ~H )
)  ->  ( (
( x  .ih  z
)  =  0  /\  ( y  .ih  z
)  =  0 )  ->  ( ( x  +h  y )  .ih  z )  =  0 ) )
2213, 21sylan 471 . . . . . . . . 9  |-  ( ( ( A  C_  ~H  /\  z  e.  A )  /\  ( x  e. 
~H  /\  y  e.  ~H ) )  ->  (
( ( x  .ih  z )  =  0  /\  ( y  .ih  z )  =  0 )  ->  ( (
x  +h  y ) 
.ih  z )  =  0 ) )
2322an32s 802 . . . . . . . 8  |-  ( ( ( A  C_  ~H  /\  ( x  e.  ~H  /\  y  e.  ~H )
)  /\  z  e.  A )  ->  (
( ( x  .ih  z )  =  0  /\  ( y  .ih  z )  =  0 )  ->  ( (
x  +h  y ) 
.ih  z )  =  0 ) )
2423ralimdva 2832 . . . . . . 7  |-  ( ( A  C_  ~H  /\  (
x  e.  ~H  /\  y  e.  ~H )
)  ->  ( A. z  e.  A  (
( x  .ih  z
)  =  0  /\  ( y  .ih  z
)  =  0 )  ->  A. z  e.  A  ( ( x  +h  y )  .ih  z
)  =  0 ) )
2524imdistanda 693 . . . . . 6  |-  ( A 
C_  ~H  ->  ( ( ( x  e.  ~H  /\  y  e.  ~H )  /\  A. z  e.  A  ( ( x  .ih  z )  =  0  /\  ( y  .ih  z )  =  0 ) )  ->  (
( x  e.  ~H  /\  y  e.  ~H )  /\  A. z  e.  A  ( ( x  +h  y )  .ih  z
)  =  0 ) ) )
26 hvaddcl 24586 . . . . . . 7  |-  ( ( x  e.  ~H  /\  y  e.  ~H )  ->  ( x  +h  y
)  e.  ~H )
2726anim1i 568 . . . . . 6  |-  ( ( ( x  e.  ~H  /\  y  e.  ~H )  /\  A. z  e.  A  ( ( x  +h  y )  .ih  z
)  =  0 )  ->  ( ( x  +h  y )  e. 
~H  /\  A. z  e.  A  ( (
x  +h  y ) 
.ih  z )  =  0 ) )
2825, 27syl6 33 . . . . 5  |-  ( A 
C_  ~H  ->  ( ( ( x  e.  ~H  /\  y  e.  ~H )  /\  A. z  e.  A  ( ( x  .ih  z )  =  0  /\  ( y  .ih  z )  =  0 ) )  ->  (
( x  +h  y
)  e.  ~H  /\  A. z  e.  A  ( ( x  +h  y
)  .ih  z )  =  0 ) ) )
29 ocel 24856 . . . . . . 7  |-  ( A 
C_  ~H  ->  ( x  e.  ( _|_ `  A
)  <->  ( x  e. 
~H  /\  A. z  e.  A  ( x  .ih  z )  =  0 ) ) )
30 ocel 24856 . . . . . . 7  |-  ( A 
C_  ~H  ->  ( y  e.  ( _|_ `  A
)  <->  ( y  e. 
~H  /\  A. z  e.  A  ( y  .ih  z )  =  0 ) ) )
3129, 30anbi12d 710 . . . . . 6  |-  ( A 
C_  ~H  ->  ( ( x  e.  ( _|_ `  A )  /\  y  e.  ( _|_ `  A
) )  <->  ( (
x  e.  ~H  /\  A. z  e.  A  ( x  .ih  z )  =  0 )  /\  ( y  e.  ~H  /\ 
A. z  e.  A  ( y  .ih  z
)  =  0 ) ) ) )
32 an4 820 . . . . . . 7  |-  ( ( ( x  e.  ~H  /\ 
A. z  e.  A  ( x  .ih  z )  =  0 )  /\  ( y  e.  ~H  /\ 
A. z  e.  A  ( y  .ih  z
)  =  0 ) )  <->  ( ( x  e.  ~H  /\  y  e.  ~H )  /\  ( A. z  e.  A  ( x  .ih  z )  =  0  /\  A. z  e.  A  (
y  .ih  z )  =  0 ) ) )
33 r19.26 2955 . . . . . . . 8  |-  ( A. z  e.  A  (
( x  .ih  z
)  =  0  /\  ( y  .ih  z
)  =  0 )  <-> 
( A. z  e.  A  ( x  .ih  z )  =  0  /\  A. z  e.  A  ( y  .ih  z )  =  0 ) )
3433anbi2i 694 . . . . . . 7  |-  ( ( ( x  e.  ~H  /\  y  e.  ~H )  /\  A. z  e.  A  ( ( x  .ih  z )  =  0  /\  ( y  .ih  z )  =  0 ) )  <->  ( (
x  e.  ~H  /\  y  e.  ~H )  /\  ( A. z  e.  A  ( x  .ih  z )  =  0  /\  A. z  e.  A  ( y  .ih  z )  =  0 ) ) )
3532, 34bitr4i 252 . . . . . 6  |-  ( ( ( x  e.  ~H  /\ 
A. z  e.  A  ( x  .ih  z )  =  0 )  /\  ( y  e.  ~H  /\ 
A. z  e.  A  ( y  .ih  z
)  =  0 ) )  <->  ( ( x  e.  ~H  /\  y  e.  ~H )  /\  A. z  e.  A  (
( x  .ih  z
)  =  0  /\  ( y  .ih  z
)  =  0 ) ) )
3631, 35syl6bb 261 . . . . 5  |-  ( A 
C_  ~H  ->  ( ( x  e.  ( _|_ `  A )  /\  y  e.  ( _|_ `  A
) )  <->  ( (
x  e.  ~H  /\  y  e.  ~H )  /\  A. z  e.  A  ( ( x  .ih  z )  =  0  /\  ( y  .ih  z )  =  0 ) ) ) )
37 ocel 24856 . . . . 5  |-  ( A 
C_  ~H  ->  ( ( x  +h  y )  e.  ( _|_ `  A
)  <->  ( ( x  +h  y )  e. 
~H  /\  A. z  e.  A  ( (
x  +h  y ) 
.ih  z )  =  0 ) ) )
3828, 36, 373imtr4d 268 . . . 4  |-  ( A 
C_  ~H  ->  ( ( x  e.  ( _|_ `  A )  /\  y  e.  ( _|_ `  A
) )  ->  (
x  +h  y )  e.  ( _|_ `  A
) ) )
3938ralrimivv 2913 . . 3  |-  ( A 
C_  ~H  ->  A. x  e.  ( _|_ `  A
) A. y  e.  ( _|_ `  A
) ( x  +h  y )  e.  ( _|_ `  A ) )
40 mul01 9662 . . . . . . . . . . . . 13  |-  ( x  e.  CC  ->  (
x  x.  0 )  =  0 )
41 oveq2 6211 . . . . . . . . . . . . . 14  |-  ( ( y  .ih  z )  =  0  ->  (
x  x.  ( y 
.ih  z ) )  =  ( x  x.  0 ) )
4241eqeq1d 2456 . . . . . . . . . . . . 13  |-  ( ( y  .ih  z )  =  0  ->  (
( x  x.  (
y  .ih  z )
)  =  0  <->  (
x  x.  0 )  =  0 ) )
4340, 42syl5ibrcom 222 . . . . . . . . . . . 12  |-  ( x  e.  CC  ->  (
( y  .ih  z
)  =  0  -> 
( x  x.  (
y  .ih  z )
)  =  0 ) )
4443ad2antrl 727 . . . . . . . . . . 11  |-  ( ( z  e.  ~H  /\  ( x  e.  CC  /\  y  e.  ~H )
)  ->  ( (
y  .ih  z )  =  0  ->  (
x  x.  ( y 
.ih  z ) )  =  0 ) )
45 ax-his3 24658 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CC  /\  y  e.  ~H  /\  z  e.  ~H )  ->  (
( x  .h  y
)  .ih  z )  =  ( x  x.  ( y  .ih  z
) ) )
4645eqeq1d 2456 . . . . . . . . . . . . 13  |-  ( ( x  e.  CC  /\  y  e.  ~H  /\  z  e.  ~H )  ->  (
( ( x  .h  y )  .ih  z
)  =  0  <->  (
x  x.  ( y 
.ih  z ) )  =  0 ) )
47463expa 1188 . . . . . . . . . . . 12  |-  ( ( ( x  e.  CC  /\  y  e.  ~H )  /\  z  e.  ~H )  ->  ( ( ( x  .h  y ) 
.ih  z )  =  0  <->  ( x  x.  ( y  .ih  z
) )  =  0 ) )
4847ancoms 453 . . . . . . . . . . 11  |-  ( ( z  e.  ~H  /\  ( x  e.  CC  /\  y  e.  ~H )
)  ->  ( (
( x  .h  y
)  .ih  z )  =  0  <->  ( x  x.  ( y  .ih  z
) )  =  0 ) )
4944, 48sylibrd 234 . . . . . . . . . 10  |-  ( ( z  e.  ~H  /\  ( x  e.  CC  /\  y  e.  ~H )
)  ->  ( (
y  .ih  z )  =  0  ->  (
( x  .h  y
)  .ih  z )  =  0 ) )
5013, 49sylan 471 . . . . . . . . 9  |-  ( ( ( A  C_  ~H  /\  z  e.  A )  /\  ( x  e.  CC  /\  y  e. 
~H ) )  -> 
( ( y  .ih  z )  =  0  ->  ( ( x  .h  y )  .ih  z )  =  0 ) )
5150an32s 802 . . . . . . . 8  |-  ( ( ( A  C_  ~H  /\  ( x  e.  CC  /\  y  e.  ~H )
)  /\  z  e.  A )  ->  (
( y  .ih  z
)  =  0  -> 
( ( x  .h  y )  .ih  z
)  =  0 ) )
5251ralimdva 2832 . . . . . . 7  |-  ( ( A  C_  ~H  /\  (
x  e.  CC  /\  y  e.  ~H )
)  ->  ( A. z  e.  A  (
y  .ih  z )  =  0  ->  A. z  e.  A  ( (
x  .h  y ) 
.ih  z )  =  0 ) )
5352imdistanda 693 . . . . . 6  |-  ( A 
C_  ~H  ->  ( ( ( x  e.  CC  /\  y  e.  ~H )  /\  A. z  e.  A  ( y  .ih  z
)  =  0 )  ->  ( ( x  e.  CC  /\  y  e.  ~H )  /\  A. z  e.  A  (
( x  .h  y
)  .ih  z )  =  0 ) ) )
54 hvmulcl 24587 . . . . . . 7  |-  ( ( x  e.  CC  /\  y  e.  ~H )  ->  ( x  .h  y
)  e.  ~H )
5554anim1i 568 . . . . . 6  |-  ( ( ( x  e.  CC  /\  y  e.  ~H )  /\  A. z  e.  A  ( ( x  .h  y )  .ih  z
)  =  0 )  ->  ( ( x  .h  y )  e. 
~H  /\  A. z  e.  A  ( (
x  .h  y ) 
.ih  z )  =  0 ) )
5653, 55syl6 33 . . . . 5  |-  ( A 
C_  ~H  ->  ( ( ( x  e.  CC  /\  y  e.  ~H )  /\  A. z  e.  A  ( y  .ih  z
)  =  0 )  ->  ( ( x  .h  y )  e. 
~H  /\  A. z  e.  A  ( (
x  .h  y ) 
.ih  z )  =  0 ) ) )
5730anbi2d 703 . . . . . 6  |-  ( A 
C_  ~H  ->  ( ( x  e.  CC  /\  y  e.  ( _|_ `  A ) )  <->  ( x  e.  CC  /\  ( y  e.  ~H  /\  A. z  e.  A  (
y  .ih  z )  =  0 ) ) ) )
58 anass 649 . . . . . 6  |-  ( ( ( x  e.  CC  /\  y  e.  ~H )  /\  A. z  e.  A  ( y  .ih  z
)  =  0 )  <-> 
( x  e.  CC  /\  ( y  e.  ~H  /\ 
A. z  e.  A  ( y  .ih  z
)  =  0 ) ) )
5957, 58syl6bbr 263 . . . . 5  |-  ( A 
C_  ~H  ->  ( ( x  e.  CC  /\  y  e.  ( _|_ `  A ) )  <->  ( (
x  e.  CC  /\  y  e.  ~H )  /\  A. z  e.  A  ( y  .ih  z
)  =  0 ) ) )
60 ocel 24856 . . . . 5  |-  ( A 
C_  ~H  ->  ( ( x  .h  y )  e.  ( _|_ `  A
)  <->  ( ( x  .h  y )  e. 
~H  /\  A. z  e.  A  ( (
x  .h  y ) 
.ih  z )  =  0 ) ) )
6156, 59, 603imtr4d 268 . . . 4  |-  ( A 
C_  ~H  ->  ( ( x  e.  CC  /\  y  e.  ( _|_ `  A ) )  -> 
( x  .h  y
)  e.  ( _|_ `  A ) ) )
6261ralrimivv 2913 . . 3  |-  ( A 
C_  ~H  ->  A. x  e.  CC  A. y  e.  ( _|_ `  A
) ( x  .h  y )  e.  ( _|_ `  A ) )
6339, 62jca 532 . 2  |-  ( A 
C_  ~H  ->  ( A. x  e.  ( _|_ `  A ) A. y  e.  ( _|_ `  A
) ( x  +h  y )  e.  ( _|_ `  A )  /\  A. x  e.  CC  A. y  e.  ( _|_ `  A
) ( x  .h  y )  e.  ( _|_ `  A ) ) )
64 issh2 24783 . 2  |-  ( ( _|_ `  A )  e.  SH  <->  ( (
( _|_ `  A
)  C_  ~H  /\  0h  e.  ( _|_ `  A
) )  /\  ( A. x  e.  ( _|_ `  A ) A. y  e.  ( _|_ `  A ) ( x  +h  y )  e.  ( _|_ `  A
)  /\  A. x  e.  CC  A. y  e.  ( _|_ `  A
) ( x  .h  y )  e.  ( _|_ `  A ) ) ) )
6512, 63, 64sylanbrc 664 1  |-  ( A 
C_  ~H  ->  ( _|_ `  A )  e.  SH )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   A.wral 2799   {crab 2803    C_ wss 3439   ` cfv 5529  (class class class)co 6203   CCcc 9394   0cc0 9396    + caddc 9399    x. cmul 9401   ~Hchil 24493    +h cva 24494    .h csm 24495    .ih csp 24496   0hc0v 24498   SHcsh 24502   _|_cort 24504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-resscn 9453  ax-1cn 9454  ax-icn 9455  ax-addcl 9456  ax-addrcl 9457  ax-mulcl 9458  ax-mulrcl 9459  ax-mulcom 9460  ax-addass 9461  ax-mulass 9462  ax-distr 9463  ax-i2m1 9464  ax-1ne0 9465  ax-1rid 9466  ax-rnegex 9467  ax-rrecex 9468  ax-cnre 9469  ax-pre-lttri 9470  ax-pre-lttrn 9471  ax-pre-ltadd 9472  ax-hilex 24573  ax-hfvadd 24574  ax-hv0cl 24577  ax-hfvmul 24579  ax-hvmul0 24584  ax-hfi 24653  ax-his2 24657  ax-his3 24658
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-op 3995  df-uni 4203  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-id 4747  df-po 4752  df-so 4753  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-ov 6206  df-er 7214  df-en 7424  df-dom 7425  df-sdom 7426  df-pnf 9534  df-mnf 9535  df-ltxr 9537  df-sh 24781  df-oc 24827
This theorem is referenced by:  shocsh  24859  ocss  24860  occl  24879  spanssoc  24924  ssjo  25022  chscllem2  25213
  Copyright terms: Public domain W3C validator