HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ococss Structured version   Unicode version

Theorem ococss 24817
Description: Inclusion in complement of complement. Part of Proposition 1 of [Kalmbach] p. 65. (Contributed by NM, 9-Aug-2000.) (New usage is discouraged.)
Assertion
Ref Expression
ococss  |-  ( A 
C_  ~H  ->  A  C_  ( _|_ `  ( _|_ `  A ) ) )

Proof of Theorem ococss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3434 . . . 4  |-  ( A 
C_  ~H  ->  ( y  e.  A  ->  y  e.  ~H ) )
2 ocorth 24815 . . . . . 6  |-  ( A 
C_  ~H  ->  ( ( y  e.  A  /\  x  e.  ( _|_ `  A ) )  -> 
( y  .ih  x
)  =  0 ) )
32expd 436 . . . . 5  |-  ( A 
C_  ~H  ->  ( y  e.  A  ->  (
x  e.  ( _|_ `  A )  ->  (
y  .ih  x )  =  0 ) ) )
43ralrimdv 2887 . . . 4  |-  ( A 
C_  ~H  ->  ( y  e.  A  ->  A. x  e.  ( _|_ `  A
) ( y  .ih  x )  =  0 ) )
51, 4jcad 533 . . 3  |-  ( A 
C_  ~H  ->  ( y  e.  A  ->  (
y  e.  ~H  /\  A. x  e.  ( _|_ `  A ) ( y 
.ih  x )  =  0 ) ) )
6 ocss 24809 . . . 4  |-  ( A 
C_  ~H  ->  ( _|_ `  A )  C_  ~H )
7 ocel 24805 . . . 4  |-  ( ( _|_ `  A ) 
C_  ~H  ->  ( y  e.  ( _|_ `  ( _|_ `  A ) )  <-> 
( y  e.  ~H  /\ 
A. x  e.  ( _|_ `  A ) ( y  .ih  x
)  =  0 ) ) )
86, 7syl 16 . . 3  |-  ( A 
C_  ~H  ->  ( y  e.  ( _|_ `  ( _|_ `  A ) )  <-> 
( y  e.  ~H  /\ 
A. x  e.  ( _|_ `  A ) ( y  .ih  x
)  =  0 ) ) )
95, 8sylibrd 234 . 2  |-  ( A 
C_  ~H  ->  ( y  e.  A  ->  y  e.  ( _|_ `  ( _|_ `  A ) ) ) )
109ssrdv 3446 1  |-  ( A 
C_  ~H  ->  A  C_  ( _|_ `  ( _|_ `  A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1757   A.wral 2792    C_ wss 3412   ` cfv 5502  (class class class)co 6176   0cc0 9369   ~Hchil 24442    .ih csp 24445   _|_cort 24453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1709  ax-7 1729  ax-8 1759  ax-9 1761  ax-10 1776  ax-11 1781  ax-12 1793  ax-13 1944  ax-ext 2429  ax-sep 4497  ax-nul 4505  ax-pow 4554  ax-pr 4615  ax-un 6458  ax-resscn 9426  ax-1cn 9427  ax-icn 9428  ax-addcl 9429  ax-addrcl 9430  ax-mulcl 9431  ax-mulrcl 9432  ax-mulcom 9433  ax-addass 9434  ax-mulass 9435  ax-distr 9436  ax-i2m1 9437  ax-1ne0 9438  ax-1rid 9439  ax-rnegex 9440  ax-rrecex 9441  ax-cnre 9442  ax-pre-lttri 9443  ax-pre-lttrn 9444  ax-pre-ltadd 9445  ax-pre-mulgt0 9446  ax-hilex 24522  ax-hfvadd 24523  ax-hv0cl 24526  ax-hfvmul 24528  ax-hvmul0 24533  ax-hfi 24602  ax-his1 24605  ax-his2 24606  ax-his3 24607
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1702  df-eu 2263  df-mo 2264  df-clab 2436  df-cleq 2442  df-clel 2445  df-nfc 2598  df-ne 2643  df-nel 2644  df-ral 2797  df-rex 2798  df-reu 2799  df-rmo 2800  df-rab 2801  df-v 3056  df-sbc 3271  df-csb 3373  df-dif 3415  df-un 3417  df-in 3419  df-ss 3426  df-nul 3722  df-if 3876  df-pw 3946  df-sn 3962  df-pr 3964  df-op 3968  df-uni 4176  df-iun 4257  df-br 4377  df-opab 4435  df-mpt 4436  df-id 4720  df-po 4725  df-so 4726  df-xp 4930  df-rel 4931  df-cnv 4932  df-co 4933  df-dm 4934  df-rn 4935  df-res 4936  df-ima 4937  df-iota 5465  df-fun 5504  df-fn 5505  df-f 5506  df-f1 5507  df-fo 5508  df-f1o 5509  df-fv 5510  df-riota 6137  df-ov 6179  df-oprab 6180  df-mpt2 6181  df-er 7187  df-en 7397  df-dom 7398  df-sdom 7399  df-pnf 9507  df-mnf 9508  df-xr 9509  df-ltxr 9510  df-le 9511  df-sub 9684  df-neg 9685  df-div 10081  df-2 10467  df-cj 12676  df-re 12677  df-im 12678  df-sh 24730  df-oc 24776
This theorem is referenced by:  shococss  24818  occon3  24821  hsupunss  24867  spanssoc  24873  shunssji  24893  ococin  24932  sshhococi  25070  h1did  25075  spansnpji  25102  pjoccoi  25703
  Copyright terms: Public domain W3C validator