HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  occllem Unicode version

Theorem occllem 22758
Description: Lemma for occl 22759. (Contributed by NM, 7-Aug-2000.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
occl.1  |-  ( ph  ->  A  C_  ~H )
occl.2  |-  ( ph  ->  F  e.  Cauchy )
occl.3  |-  ( ph  ->  F : NN --> ( _|_ `  A ) )
occl.4  |-  ( ph  ->  B  e.  A )
Assertion
Ref Expression
occllem  |-  ( ph  ->  ( (  ~~>v  `  F
)  .ih  B )  =  0 )

Proof of Theorem occllem
Dummy variables  x  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2404 . . . 4  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
21cnfldhaus 18772 . . 3  |-  ( TopOpen ` fld )  e.  Haus
32a1i 11 . 2  |-  ( ph  ->  ( TopOpen ` fld )  e.  Haus )
4 occl.2 . . . . . . 7  |-  ( ph  ->  F  e.  Cauchy )
5 ax-hcompl 22657 . . . . . . 7  |-  ( F  e.  Cauchy  ->  E. x  e.  ~H  F  ~~>v  x )
6 hlimf 22693 . . . . . . . . . 10  |-  ~~>v  : dom  ~~>v  --> ~H
7 ffn 5550 . . . . . . . . . 10  |-  (  ~~>v  : dom  ~~>v  --> ~H  ->  ~~>v  Fn  dom  ~~>v  )
86, 7ax-mp 8 . . . . . . . . 9  |-  ~~>v  Fn  dom  ~~>v
9 fnbr 5506 . . . . . . . . 9  |-  ( ( 
~~>v  Fn  dom  ~~>v  /\  F  ~~>v  x )  ->  F  e.  dom  ~~>v  )
108, 9mpan 652 . . . . . . . 8  |-  ( F 
~~>v  x  ->  F  e.  dom 
~~>v  )
1110rexlimivw 2786 . . . . . . 7  |-  ( E. x  e.  ~H  F  ~~>v  x  ->  F  e.  dom  ~~>v  )
124, 5, 113syl 19 . . . . . 6  |-  ( ph  ->  F  e.  dom  ~~>v  )
13 ffun 5552 . . . . . . 7  |-  (  ~~>v  : dom  ~~>v  --> ~H  ->  Fun  ~~>v  )
14 funfvbrb 5802 . . . . . . 7  |-  ( Fun  ~~>v 
->  ( F  e.  dom  ~~>v  <->  F  ~~>v  (  ~~>v  `  F )
) )
156, 13, 14mp2b 10 . . . . . 6  |-  ( F  e.  dom  ~~>v  <->  F  ~~>v  (  ~~>v  `  F ) )
1612, 15sylib 189 . . . . 5  |-  ( ph  ->  F  ~~>v  (  ~~>v  `  F
) )
17 eqid 2404 . . . . . . . 8  |-  <. <.  +h  ,  .h  >. ,  normh >.  =  <. <.  +h  ,  .h  >. ,  normh >.
18 eqid 2404 . . . . . . . . 9  |-  ( normh  o. 
-h  )  =  (
normh  o.  -h  )
1917, 18hhims 22627 . . . . . . . 8  |-  ( normh  o. 
-h  )  =  (
IndMet `  <. <.  +h  ,  .h  >. ,  normh >. )
20 eqid 2404 . . . . . . . 8  |-  ( MetOpen `  ( normh  o.  -h  )
)  =  ( MetOpen `  ( normh  o.  -h  )
)
2117, 19, 20hhlm 22654 . . . . . . 7  |-  ~~>v  =  ( ( ~~> t `  ( MetOpen
`  ( normh  o.  -h  ) ) )  |`  ( ~H  ^m  NN ) )
22 resss 5129 . . . . . . 7  |-  ( ( ~~> t `  ( MetOpen `  ( normh  o.  -h  )
) )  |`  ( ~H  ^m  NN ) ) 
C_  ( ~~> t `  ( MetOpen `  ( normh  o. 
-h  ) ) )
2321, 22eqsstri 3338 . . . . . 6  |-  ~~>v  C_  ( ~~> t `  ( MetOpen `  ( normh  o.  -h  ) ) )
2423ssbri 4214 . . . . 5  |-  ( F 
~~>v  (  ~~>v  `  F )  ->  F ( ~~> t `  ( MetOpen `  ( normh  o. 
-h  ) ) ) (  ~~>v  `  F )
)
2516, 24syl 16 . . . 4  |-  ( ph  ->  F ( ~~> t `  ( MetOpen `  ( normh  o. 
-h  ) ) ) (  ~~>v  `  F )
)
2618hilxmet 22650 . . . . . 6  |-  ( normh  o. 
-h  )  e.  ( * Met `  ~H )
2720mopntopon 18422 . . . . . 6  |-  ( (
normh  o.  -h  )  e.  ( * Met `  ~H )  ->  ( MetOpen `  ( normh  o.  -h  ) )  e.  (TopOn `  ~H ) )
2826, 27mp1i 12 . . . . 5  |-  ( ph  ->  ( MetOpen `  ( normh  o. 
-h  ) )  e.  (TopOn `  ~H )
)
2928cnmptid 17646 . . . . 5  |-  ( ph  ->  ( x  e.  ~H  |->  x )  e.  ( ( MetOpen `  ( normh  o. 
-h  ) )  Cn  ( MetOpen `  ( normh  o. 
-h  ) ) ) )
30 occl.1 . . . . . . 7  |-  ( ph  ->  A  C_  ~H )
31 occl.4 . . . . . . 7  |-  ( ph  ->  B  e.  A )
3230, 31sseldd 3309 . . . . . 6  |-  ( ph  ->  B  e.  ~H )
3328, 28, 32cnmptc 17647 . . . . 5  |-  ( ph  ->  ( x  e.  ~H  |->  B )  e.  ( ( MetOpen `  ( normh  o. 
-h  ) )  Cn  ( MetOpen `  ( normh  o. 
-h  ) ) ) )
3417hhnv 22620 . . . . . 6  |-  <. <.  +h  ,  .h  >. ,  normh >.  e.  NrmCVec
3517hhip 22632 . . . . . . 7  |-  .ih  =  ( .i OLD `  <. <.  +h  ,  .h  >. ,  normh >.
)
3635, 19, 20, 1dipcn 22172 . . . . . 6  |-  ( <. <.  +h  ,  .h  >. , 
normh >.  e.  NrmCVec  ->  .ih  e.  ( ( ( MetOpen `  ( normh  o.  -h  )
)  tX  ( MetOpen `  ( normh  o.  -h  )
) )  Cn  ( TopOpen
` fld
) ) )
3734, 36mp1i 12 . . . . 5  |-  ( ph  ->  .ih  e.  ( ( ( MetOpen `  ( normh  o. 
-h  ) )  tX  ( MetOpen `  ( normh  o. 
-h  ) ) )  Cn  ( TopOpen ` fld ) ) )
3828, 29, 33, 37cnmpt12f 17651 . . . 4  |-  ( ph  ->  ( x  e.  ~H  |->  ( x  .ih  B ) )  e.  ( (
MetOpen `  ( normh  o.  -h  ) )  Cn  ( TopOpen
` fld
) ) )
3925, 38lmcn 17323 . . 3  |-  ( ph  ->  ( ( x  e. 
~H  |->  ( x  .ih  B ) )  o.  F
) ( ~~> t `  ( TopOpen ` fld ) ) ( ( x  e.  ~H  |->  ( x  .ih  B ) ) `  (  ~~>v  `  F ) ) )
40 occl.3 . . . . . . . . . . 11  |-  ( ph  ->  F : NN --> ( _|_ `  A ) )
4140ffvelrnda 5829 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  ( _|_ `  A
) )
42 ocel 22736 . . . . . . . . . . . 12  |-  ( A 
C_  ~H  ->  ( ( F `  k )  e.  ( _|_ `  A
)  <->  ( ( F `
 k )  e. 
~H  /\  A. x  e.  A  ( ( F `  k )  .ih  x )  =  0 ) ) )
4330, 42syl 16 . . . . . . . . . . 11  |-  ( ph  ->  ( ( F `  k )  e.  ( _|_ `  A )  <-> 
( ( F `  k )  e.  ~H  /\ 
A. x  e.  A  ( ( F `  k )  .ih  x
)  =  0 ) ) )
4443adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( F `  k )  e.  ( _|_ `  A
)  <->  ( ( F `
 k )  e. 
~H  /\  A. x  e.  A  ( ( F `  k )  .ih  x )  =  0 ) ) )
4541, 44mpbid 202 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( F `  k )  e.  ~H  /\  A. x  e.  A  (
( F `  k
)  .ih  x )  =  0 ) )
4645simpld 446 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e. 
~H )
47 oveq1 6047 . . . . . . . . 9  |-  ( x  =  ( F `  k )  ->  (
x  .ih  B )  =  ( ( F `
 k )  .ih  B ) )
48 eqid 2404 . . . . . . . . 9  |-  ( x  e.  ~H  |->  ( x 
.ih  B ) )  =  ( x  e. 
~H  |->  ( x  .ih  B ) )
49 ovex 6065 . . . . . . . . 9  |-  ( ( F `  k ) 
.ih  B )  e. 
_V
5047, 48, 49fvmpt 5765 . . . . . . . 8  |-  ( ( F `  k )  e.  ~H  ->  (
( x  e.  ~H  |->  ( x  .ih  B ) ) `  ( F `
 k ) )  =  ( ( F `
 k )  .ih  B ) )
5146, 50syl 16 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( x  e.  ~H  |->  ( x  .ih  B ) ) `  ( F `
 k ) )  =  ( ( F `
 k )  .ih  B ) )
5231adantr 452 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  B  e.  A )
5345simprd 450 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  A. x  e.  A  ( ( F `  k )  .ih  x )  =  0 )
54 oveq2 6048 . . . . . . . . . 10  |-  ( x  =  B  ->  (
( F `  k
)  .ih  x )  =  ( ( F `
 k )  .ih  B ) )
5554eqeq1d 2412 . . . . . . . . 9  |-  ( x  =  B  ->  (
( ( F `  k )  .ih  x
)  =  0  <->  (
( F `  k
)  .ih  B )  =  0 ) )
5655rspcv 3008 . . . . . . . 8  |-  ( B  e.  A  ->  ( A. x  e.  A  ( ( F `  k )  .ih  x
)  =  0  -> 
( ( F `  k )  .ih  B
)  =  0 ) )
5752, 53, 56sylc 58 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( F `  k ) 
.ih  B )  =  0 )
5851, 57eqtrd 2436 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( x  e.  ~H  |->  ( x  .ih  B ) ) `  ( F `
 k ) )  =  0 )
59 ocss 22740 . . . . . . . . 9  |-  ( A 
C_  ~H  ->  ( _|_ `  A )  C_  ~H )
6030, 59syl 16 . . . . . . . 8  |-  ( ph  ->  ( _|_ `  A
)  C_  ~H )
61 fss 5558 . . . . . . . 8  |-  ( ( F : NN --> ( _|_ `  A )  /\  ( _|_ `  A )  C_  ~H )  ->  F : NN
--> ~H )
6240, 60, 61syl2anc 643 . . . . . . 7  |-  ( ph  ->  F : NN --> ~H )
63 fvco3 5759 . . . . . . 7  |-  ( ( F : NN --> ~H  /\  k  e.  NN )  ->  ( ( ( x  e.  ~H  |->  ( x 
.ih  B ) )  o.  F ) `  k )  =  ( ( x  e.  ~H  |->  ( x  .ih  B ) ) `  ( F `
 k ) ) )
6462, 63sylan 458 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( x  e.  ~H  |->  ( x  .ih  B ) )  o.  F ) `
 k )  =  ( ( x  e. 
~H  |->  ( x  .ih  B ) ) `  ( F `  k )
) )
65 c0ex 9041 . . . . . . . 8  |-  0  e.  _V
6665fvconst2 5906 . . . . . . 7  |-  ( k  e.  NN  ->  (
( NN  X.  {
0 } ) `  k )  =  0 )
6766adantl 453 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( NN  X.  { 0 } ) `  k
)  =  0 )
6858, 64, 673eqtr4d 2446 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( x  e.  ~H  |->  ( x  .ih  B ) )  o.  F ) `
 k )  =  ( ( NN  X.  { 0 } ) `
 k ) )
6968ralrimiva 2749 . . . 4  |-  ( ph  ->  A. k  e.  NN  ( ( ( x  e.  ~H  |->  ( x 
.ih  B ) )  o.  F ) `  k )  =  ( ( NN  X.  {
0 } ) `  k ) )
70 ovex 6065 . . . . . . . 8  |-  ( x 
.ih  B )  e. 
_V
7170, 48fnmpti 5532 . . . . . . 7  |-  ( x  e.  ~H  |->  ( x 
.ih  B ) )  Fn  ~H
7271a1i 11 . . . . . 6  |-  ( ph  ->  ( x  e.  ~H  |->  ( x  .ih  B ) )  Fn  ~H )
73 fnfco 5568 . . . . . 6  |-  ( ( ( x  e.  ~H  |->  ( x  .ih  B ) )  Fn  ~H  /\  F : NN --> ~H )  ->  ( ( x  e. 
~H  |->  ( x  .ih  B ) )  o.  F
)  Fn  NN )
7472, 62, 73syl2anc 643 . . . . 5  |-  ( ph  ->  ( ( x  e. 
~H  |->  ( x  .ih  B ) )  o.  F
)  Fn  NN )
7565fconst 5588 . . . . . 6  |-  ( NN 
X.  { 0 } ) : NN --> { 0 }
76 ffn 5550 . . . . . 6  |-  ( ( NN  X.  { 0 } ) : NN --> { 0 }  ->  ( NN  X.  { 0 } )  Fn  NN )
7775, 76ax-mp 8 . . . . 5  |-  ( NN 
X.  { 0 } )  Fn  NN
78 eqfnfv 5786 . . . . 5  |-  ( ( ( ( x  e. 
~H  |->  ( x  .ih  B ) )  o.  F
)  Fn  NN  /\  ( NN  X.  { 0 } )  Fn  NN )  ->  ( ( ( x  e.  ~H  |->  ( x  .ih  B ) )  o.  F )  =  ( NN  X.  { 0 } )  <->  A. k  e.  NN  ( ( ( x  e.  ~H  |->  ( x 
.ih  B ) )  o.  F ) `  k )  =  ( ( NN  X.  {
0 } ) `  k ) ) )
7974, 77, 78sylancl 644 . . . 4  |-  ( ph  ->  ( ( ( x  e.  ~H  |->  ( x 
.ih  B ) )  o.  F )  =  ( NN  X.  {
0 } )  <->  A. k  e.  NN  ( ( ( x  e.  ~H  |->  ( x  .ih  B ) )  o.  F ) `
 k )  =  ( ( NN  X.  { 0 } ) `
 k ) ) )
8069, 79mpbird 224 . . 3  |-  ( ph  ->  ( ( x  e. 
~H  |->  ( x  .ih  B ) )  o.  F
)  =  ( NN 
X.  { 0 } ) )
81 fvex 5701 . . . . 5  |-  (  ~~>v  `  F )  e.  _V
8281hlimveci 22645 . . . 4  |-  ( F 
~~>v  (  ~~>v  `  F )  ->  (  ~~>v  `  F )  e.  ~H )
83 oveq1 6047 . . . . 5  |-  ( x  =  (  ~~>v  `  F
)  ->  ( x  .ih  B )  =  ( (  ~~>v  `  F )  .ih  B ) )
84 ovex 6065 . . . . 5  |-  ( ( 
~~>v  `  F )  .ih  B )  e.  _V
8583, 48, 84fvmpt 5765 . . . 4  |-  ( ( 
~~>v  `  F )  e. 
~H  ->  ( ( x  e.  ~H  |->  ( x 
.ih  B ) ) `
 (  ~~>v  `  F
) )  =  ( (  ~~>v  `  F )  .ih  B ) )
8616, 82, 853syl 19 . . 3  |-  ( ph  ->  ( ( x  e. 
~H  |->  ( x  .ih  B ) ) `  (  ~~>v 
`  F ) )  =  ( (  ~~>v  `  F )  .ih  B
) )
8739, 80, 863brtr3d 4201 . 2  |-  ( ph  ->  ( NN  X.  {
0 } ) ( ~~> t `  ( TopOpen ` fld )
) ( (  ~~>v  `  F )  .ih  B
) )
881cnfldtopon 18770 . . . 4  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
8988a1i 11 . . 3  |-  ( ph  ->  ( TopOpen ` fld )  e.  (TopOn `  CC ) )
90 0cn 9040 . . . 4  |-  0  e.  CC
9190a1i 11 . . 3  |-  ( ph  ->  0  e.  CC )
92 1z 10267 . . . 4  |-  1  e.  ZZ
9392a1i 11 . . 3  |-  ( ph  ->  1  e.  ZZ )
94 nnuz 10477 . . . 4  |-  NN  =  ( ZZ>= `  1 )
9594lmconst 17279 . . 3  |-  ( ( ( TopOpen ` fld )  e.  (TopOn `  CC )  /\  0  e.  CC  /\  1  e.  ZZ )  ->  ( NN  X.  { 0 } ) ( ~~> t `  ( TopOpen ` fld ) ) 0 )
9689, 91, 93, 95syl3anc 1184 . 2  |-  ( ph  ->  ( NN  X.  {
0 } ) ( ~~> t `  ( TopOpen ` fld )
) 0 )
973, 87, 96lmmo 17398 1  |-  ( ph  ->  ( (  ~~>v  `  F
)  .ih  B )  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2666   E.wrex 2667    C_ wss 3280   {csn 3774   <.cop 3777   class class class wbr 4172    e. cmpt 4226    X. cxp 4835   dom cdm 4837    |` cres 4839    o. ccom 4841   Fun wfun 5407    Fn wfn 5408   -->wf 5409   ` cfv 5413  (class class class)co 6040    ^m cmap 6977   CCcc 8944   0cc0 8946   1c1 8947   NNcn 9956   ZZcz 10238   TopOpenctopn 13604   * Metcxmt 16641   MetOpencmopn 16646  ℂfldccnfld 16658  TopOnctopon 16914    Cn ccn 17242   ~~> tclm 17244   Hauscha 17326    tX ctx 17545   NrmCVeccnv 22016   ~Hchil 22375    +h cva 22376    .h csm 22377    .ih csp 22378   normhcno 22379    -h cmv 22381   Cauchyccau 22382    ~~>v chli 22383   _|_cort 22386
This theorem is referenced by:  occl  22759
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025  ax-mulf 9026  ax-hilex 22455  ax-hfvadd 22456  ax-hvcom 22457  ax-hvass 22458  ax-hv0cl 22459  ax-hvaddid 22460  ax-hfvmul 22461  ax-hvmulid 22462  ax-hvmulass 22463  ax-hvdistr1 22464  ax-hvdistr2 22465  ax-hvmul0 22466  ax-hfi 22534  ax-his1 22537  ax-his2 22538  ax-his3 22539  ax-his4 22540  ax-hcompl 22657
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-map 6979  df-pm 6980  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-sup 7404  df-oi 7435  df-card 7782  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-ioo 10876  df-icc 10879  df-fz 11000  df-fzo 11091  df-seq 11279  df-exp 11338  df-hash 11574  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-clim 12237  df-sum 12435  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-starv 13499  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-unif 13507  df-hom 13508  df-cco 13509  df-rest 13605  df-topn 13606  df-topgen 13622  df-pt 13623  df-prds 13626  df-xrs 13681  df-0g 13682  df-gsum 13683  df-qtop 13688  df-imas 13689  df-xps 13691  df-mre 13766  df-mrc 13767  df-acs 13769  df-mnd 14645  df-submnd 14694  df-mulg 14770  df-cntz 15071  df-cmn 15369  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-cnfld 16659  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-cn 17245  df-cnp 17246  df-lm 17247  df-haus 17333  df-tx 17547  df-hmeo 17740  df-xms 18303  df-ms 18304  df-tms 18305  df-grpo 21732  df-gid 21733  df-ginv 21734  df-gdiv 21735  df-ablo 21823  df-vc 21978  df-nv 22024  df-va 22027  df-ba 22028  df-sm 22029  df-0v 22030  df-vs 22031  df-nmcv 22032  df-ims 22033  df-dip 22150  df-hnorm 22424  df-hvsub 22427  df-hlim 22428  df-sh 22662  df-oc 22707
  Copyright terms: Public domain W3C validator