HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  occllem Structured version   Unicode version

Theorem occllem 25894
Description: Lemma for occl 25895. (Contributed by NM, 7-Aug-2000.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
occl.1  |-  ( ph  ->  A  C_  ~H )
occl.2  |-  ( ph  ->  F  e.  Cauchy )
occl.3  |-  ( ph  ->  F : NN --> ( _|_ `  A ) )
occl.4  |-  ( ph  ->  B  e.  A )
Assertion
Ref Expression
occllem  |-  ( ph  ->  ( (  ~~>v  `  F
)  .ih  B )  =  0 )

Proof of Theorem occllem
Dummy variables  x  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2467 . . . 4  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
21cnfldhaus 21024 . . 3  |-  ( TopOpen ` fld )  e.  Haus
32a1i 11 . 2  |-  ( ph  ->  ( TopOpen ` fld )  e.  Haus )
4 occl.2 . . . . . . 7  |-  ( ph  ->  F  e.  Cauchy )
5 ax-hcompl 25792 . . . . . . 7  |-  ( F  e.  Cauchy  ->  E. x  e.  ~H  F  ~~>v  x )
6 hlimf 25828 . . . . . . . . . 10  |-  ~~>v  : dom  ~~>v  --> ~H
7 ffn 5729 . . . . . . . . . 10  |-  (  ~~>v  : dom  ~~>v  --> ~H  ->  ~~>v  Fn  dom  ~~>v  )
86, 7ax-mp 5 . . . . . . . . 9  |-  ~~>v  Fn  dom  ~~>v
9 fnbr 5681 . . . . . . . . 9  |-  ( ( 
~~>v  Fn  dom  ~~>v  /\  F  ~~>v  x )  ->  F  e.  dom  ~~>v  )
108, 9mpan 670 . . . . . . . 8  |-  ( F 
~~>v  x  ->  F  e.  dom 
~~>v  )
1110rexlimivw 2952 . . . . . . 7  |-  ( E. x  e.  ~H  F  ~~>v  x  ->  F  e.  dom  ~~>v  )
124, 5, 113syl 20 . . . . . 6  |-  ( ph  ->  F  e.  dom  ~~>v  )
13 ffun 5731 . . . . . . 7  |-  (  ~~>v  : dom  ~~>v  --> ~H  ->  Fun  ~~>v  )
14 funfvbrb 5992 . . . . . . 7  |-  ( Fun  ~~>v 
->  ( F  e.  dom  ~~>v  <->  F  ~~>v  (  ~~>v  `  F )
) )
156, 13, 14mp2b 10 . . . . . 6  |-  ( F  e.  dom  ~~>v  <->  F  ~~>v  (  ~~>v  `  F ) )
1612, 15sylib 196 . . . . 5  |-  ( ph  ->  F  ~~>v  (  ~~>v  `  F
) )
17 eqid 2467 . . . . . . . 8  |-  <. <.  +h  ,  .h  >. ,  normh >.  =  <. <.  +h  ,  .h  >. ,  normh >.
18 eqid 2467 . . . . . . . . 9  |-  ( normh  o. 
-h  )  =  (
normh  o.  -h  )
1917, 18hhims 25762 . . . . . . . 8  |-  ( normh  o. 
-h  )  =  (
IndMet `  <. <.  +h  ,  .h  >. ,  normh >. )
20 eqid 2467 . . . . . . . 8  |-  ( MetOpen `  ( normh  o.  -h  )
)  =  ( MetOpen `  ( normh  o.  -h  )
)
2117, 19, 20hhlm 25789 . . . . . . 7  |-  ~~>v  =  ( ( ~~> t `  ( MetOpen
`  ( normh  o.  -h  ) ) )  |`  ( ~H  ^m  NN ) )
22 resss 5295 . . . . . . 7  |-  ( ( ~~> t `  ( MetOpen `  ( normh  o.  -h  )
) )  |`  ( ~H  ^m  NN ) ) 
C_  ( ~~> t `  ( MetOpen `  ( normh  o. 
-h  ) ) )
2321, 22eqsstri 3534 . . . . . 6  |-  ~~>v  C_  ( ~~> t `  ( MetOpen `  ( normh  o.  -h  ) ) )
2423ssbri 4489 . . . . 5  |-  ( F 
~~>v  (  ~~>v  `  F )  ->  F ( ~~> t `  ( MetOpen `  ( normh  o. 
-h  ) ) ) (  ~~>v  `  F )
)
2516, 24syl 16 . . . 4  |-  ( ph  ->  F ( ~~> t `  ( MetOpen `  ( normh  o. 
-h  ) ) ) (  ~~>v  `  F )
)
2618hilxmet 25785 . . . . . 6  |-  ( normh  o. 
-h  )  e.  ( *Met `  ~H )
2720mopntopon 20674 . . . . . 6  |-  ( (
normh  o.  -h  )  e.  ( *Met `  ~H )  ->  ( MetOpen `  ( normh  o.  -h  )
)  e.  (TopOn `  ~H ) )
2826, 27mp1i 12 . . . . 5  |-  ( ph  ->  ( MetOpen `  ( normh  o. 
-h  ) )  e.  (TopOn `  ~H )
)
2928cnmptid 19894 . . . . 5  |-  ( ph  ->  ( x  e.  ~H  |->  x )  e.  ( ( MetOpen `  ( normh  o. 
-h  ) )  Cn  ( MetOpen `  ( normh  o. 
-h  ) ) ) )
30 occl.1 . . . . . . 7  |-  ( ph  ->  A  C_  ~H )
31 occl.4 . . . . . . 7  |-  ( ph  ->  B  e.  A )
3230, 31sseldd 3505 . . . . . 6  |-  ( ph  ->  B  e.  ~H )
3328, 28, 32cnmptc 19895 . . . . 5  |-  ( ph  ->  ( x  e.  ~H  |->  B )  e.  ( ( MetOpen `  ( normh  o. 
-h  ) )  Cn  ( MetOpen `  ( normh  o. 
-h  ) ) ) )
3417hhnv 25755 . . . . . 6  |-  <. <.  +h  ,  .h  >. ,  normh >.  e.  NrmCVec
3517hhip 25767 . . . . . . 7  |-  .ih  =  ( .iOLD `  <. <.  +h  ,  .h  >. ,  normh >.
)
3635, 19, 20, 1dipcn 25306 . . . . . 6  |-  ( <. <.  +h  ,  .h  >. , 
normh >.  e.  NrmCVec  ->  .ih  e.  ( ( ( MetOpen `  ( normh  o.  -h  )
)  tX  ( MetOpen `  ( normh  o.  -h  )
) )  Cn  ( TopOpen
` fld
) ) )
3734, 36mp1i 12 . . . . 5  |-  ( ph  ->  .ih  e.  ( ( ( MetOpen `  ( normh  o. 
-h  ) )  tX  ( MetOpen `  ( normh  o. 
-h  ) ) )  Cn  ( TopOpen ` fld ) ) )
3828, 29, 33, 37cnmpt12f 19899 . . . 4  |-  ( ph  ->  ( x  e.  ~H  |->  ( x  .ih  B ) )  e.  ( (
MetOpen `  ( normh  o.  -h  ) )  Cn  ( TopOpen
` fld
) ) )
3925, 38lmcn 19569 . . 3  |-  ( ph  ->  ( ( x  e. 
~H  |->  ( x  .ih  B ) )  o.  F
) ( ~~> t `  ( TopOpen ` fld ) ) ( ( x  e.  ~H  |->  ( x  .ih  B ) ) `  (  ~~>v  `  F ) ) )
40 occl.3 . . . . . . . . . . 11  |-  ( ph  ->  F : NN --> ( _|_ `  A ) )
4140ffvelrnda 6019 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  ( _|_ `  A
) )
42 ocel 25872 . . . . . . . . . . . 12  |-  ( A 
C_  ~H  ->  ( ( F `  k )  e.  ( _|_ `  A
)  <->  ( ( F `
 k )  e. 
~H  /\  A. x  e.  A  ( ( F `  k )  .ih  x )  =  0 ) ) )
4330, 42syl 16 . . . . . . . . . . 11  |-  ( ph  ->  ( ( F `  k )  e.  ( _|_ `  A )  <-> 
( ( F `  k )  e.  ~H  /\ 
A. x  e.  A  ( ( F `  k )  .ih  x
)  =  0 ) ) )
4443adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( F `  k )  e.  ( _|_ `  A
)  <->  ( ( F `
 k )  e. 
~H  /\  A. x  e.  A  ( ( F `  k )  .ih  x )  =  0 ) ) )
4541, 44mpbid 210 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( F `  k )  e.  ~H  /\  A. x  e.  A  (
( F `  k
)  .ih  x )  =  0 ) )
4645simpld 459 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e. 
~H )
47 oveq1 6289 . . . . . . . . 9  |-  ( x  =  ( F `  k )  ->  (
x  .ih  B )  =  ( ( F `
 k )  .ih  B ) )
48 eqid 2467 . . . . . . . . 9  |-  ( x  e.  ~H  |->  ( x 
.ih  B ) )  =  ( x  e. 
~H  |->  ( x  .ih  B ) )
49 ovex 6307 . . . . . . . . 9  |-  ( ( F `  k ) 
.ih  B )  e. 
_V
5047, 48, 49fvmpt 5948 . . . . . . . 8  |-  ( ( F `  k )  e.  ~H  ->  (
( x  e.  ~H  |->  ( x  .ih  B ) ) `  ( F `
 k ) )  =  ( ( F `
 k )  .ih  B ) )
5146, 50syl 16 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( x  e.  ~H  |->  ( x  .ih  B ) ) `  ( F `
 k ) )  =  ( ( F `
 k )  .ih  B ) )
5231adantr 465 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  B  e.  A )
5345simprd 463 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  A. x  e.  A  ( ( F `  k )  .ih  x )  =  0 )
54 oveq2 6290 . . . . . . . . . 10  |-  ( x  =  B  ->  (
( F `  k
)  .ih  x )  =  ( ( F `
 k )  .ih  B ) )
5554eqeq1d 2469 . . . . . . . . 9  |-  ( x  =  B  ->  (
( ( F `  k )  .ih  x
)  =  0  <->  (
( F `  k
)  .ih  B )  =  0 ) )
5655rspcv 3210 . . . . . . . 8  |-  ( B  e.  A  ->  ( A. x  e.  A  ( ( F `  k )  .ih  x
)  =  0  -> 
( ( F `  k )  .ih  B
)  =  0 ) )
5752, 53, 56sylc 60 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( F `  k ) 
.ih  B )  =  0 )
5851, 57eqtrd 2508 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( x  e.  ~H  |->  ( x  .ih  B ) ) `  ( F `
 k ) )  =  0 )
59 ocss 25876 . . . . . . . . 9  |-  ( A 
C_  ~H  ->  ( _|_ `  A )  C_  ~H )
6030, 59syl 16 . . . . . . . 8  |-  ( ph  ->  ( _|_ `  A
)  C_  ~H )
61 fss 5737 . . . . . . . 8  |-  ( ( F : NN --> ( _|_ `  A )  /\  ( _|_ `  A )  C_  ~H )  ->  F : NN
--> ~H )
6240, 60, 61syl2anc 661 . . . . . . 7  |-  ( ph  ->  F : NN --> ~H )
63 fvco3 5942 . . . . . . 7  |-  ( ( F : NN --> ~H  /\  k  e.  NN )  ->  ( ( ( x  e.  ~H  |->  ( x 
.ih  B ) )  o.  F ) `  k )  =  ( ( x  e.  ~H  |->  ( x  .ih  B ) ) `  ( F `
 k ) ) )
6462, 63sylan 471 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( x  e.  ~H  |->  ( x  .ih  B ) )  o.  F ) `
 k )  =  ( ( x  e. 
~H  |->  ( x  .ih  B ) ) `  ( F `  k )
) )
65 c0ex 9586 . . . . . . . 8  |-  0  e.  _V
6665fvconst2 6114 . . . . . . 7  |-  ( k  e.  NN  ->  (
( NN  X.  {
0 } ) `  k )  =  0 )
6766adantl 466 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( NN  X.  { 0 } ) `  k
)  =  0 )
6858, 64, 673eqtr4d 2518 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( x  e.  ~H  |->  ( x  .ih  B ) )  o.  F ) `
 k )  =  ( ( NN  X.  { 0 } ) `
 k ) )
6968ralrimiva 2878 . . . 4  |-  ( ph  ->  A. k  e.  NN  ( ( ( x  e.  ~H  |->  ( x 
.ih  B ) )  o.  F ) `  k )  =  ( ( NN  X.  {
0 } ) `  k ) )
70 ovex 6307 . . . . . . . 8  |-  ( x 
.ih  B )  e. 
_V
7170, 48fnmpti 5707 . . . . . . 7  |-  ( x  e.  ~H  |->  ( x 
.ih  B ) )  Fn  ~H
7271a1i 11 . . . . . 6  |-  ( ph  ->  ( x  e.  ~H  |->  ( x  .ih  B ) )  Fn  ~H )
73 fnfco 5748 . . . . . 6  |-  ( ( ( x  e.  ~H  |->  ( x  .ih  B ) )  Fn  ~H  /\  F : NN --> ~H )  ->  ( ( x  e. 
~H  |->  ( x  .ih  B ) )  o.  F
)  Fn  NN )
7472, 62, 73syl2anc 661 . . . . 5  |-  ( ph  ->  ( ( x  e. 
~H  |->  ( x  .ih  B ) )  o.  F
)  Fn  NN )
7565fconst 5769 . . . . . 6  |-  ( NN 
X.  { 0 } ) : NN --> { 0 }
76 ffn 5729 . . . . . 6  |-  ( ( NN  X.  { 0 } ) : NN --> { 0 }  ->  ( NN  X.  { 0 } )  Fn  NN )
7775, 76ax-mp 5 . . . . 5  |-  ( NN 
X.  { 0 } )  Fn  NN
78 eqfnfv 5973 . . . . 5  |-  ( ( ( ( x  e. 
~H  |->  ( x  .ih  B ) )  o.  F
)  Fn  NN  /\  ( NN  X.  { 0 } )  Fn  NN )  ->  ( ( ( x  e.  ~H  |->  ( x  .ih  B ) )  o.  F )  =  ( NN  X.  { 0 } )  <->  A. k  e.  NN  ( ( ( x  e.  ~H  |->  ( x 
.ih  B ) )  o.  F ) `  k )  =  ( ( NN  X.  {
0 } ) `  k ) ) )
7974, 77, 78sylancl 662 . . . 4  |-  ( ph  ->  ( ( ( x  e.  ~H  |->  ( x 
.ih  B ) )  o.  F )  =  ( NN  X.  {
0 } )  <->  A. k  e.  NN  ( ( ( x  e.  ~H  |->  ( x  .ih  B ) )  o.  F ) `
 k )  =  ( ( NN  X.  { 0 } ) `
 k ) ) )
8069, 79mpbird 232 . . 3  |-  ( ph  ->  ( ( x  e. 
~H  |->  ( x  .ih  B ) )  o.  F
)  =  ( NN 
X.  { 0 } ) )
81 fvex 5874 . . . . 5  |-  (  ~~>v  `  F )  e.  _V
8281hlimveci 25780 . . . 4  |-  ( F 
~~>v  (  ~~>v  `  F )  ->  (  ~~>v  `  F )  e.  ~H )
83 oveq1 6289 . . . . 5  |-  ( x  =  (  ~~>v  `  F
)  ->  ( x  .ih  B )  =  ( (  ~~>v  `  F )  .ih  B ) )
84 ovex 6307 . . . . 5  |-  ( ( 
~~>v  `  F )  .ih  B )  e.  _V
8583, 48, 84fvmpt 5948 . . . 4  |-  ( ( 
~~>v  `  F )  e. 
~H  ->  ( ( x  e.  ~H  |->  ( x 
.ih  B ) ) `
 (  ~~>v  `  F
) )  =  ( (  ~~>v  `  F )  .ih  B ) )
8616, 82, 853syl 20 . . 3  |-  ( ph  ->  ( ( x  e. 
~H  |->  ( x  .ih  B ) ) `  (  ~~>v 
`  F ) )  =  ( (  ~~>v  `  F )  .ih  B
) )
8739, 80, 863brtr3d 4476 . 2  |-  ( ph  ->  ( NN  X.  {
0 } ) ( ~~> t `  ( TopOpen ` fld )
) ( (  ~~>v  `  F )  .ih  B
) )
881cnfldtopon 21022 . . . 4  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
8988a1i 11 . . 3  |-  ( ph  ->  ( TopOpen ` fld )  e.  (TopOn `  CC ) )
90 0cnd 9585 . . 3  |-  ( ph  ->  0  e.  CC )
91 1zzd 10891 . . 3  |-  ( ph  ->  1  e.  ZZ )
92 nnuz 11113 . . . 4  |-  NN  =  ( ZZ>= `  1 )
9392lmconst 19525 . . 3  |-  ( ( ( TopOpen ` fld )  e.  (TopOn `  CC )  /\  0  e.  CC  /\  1  e.  ZZ )  ->  ( NN  X.  { 0 } ) ( ~~> t `  ( TopOpen ` fld ) ) 0 )
9489, 90, 91, 93syl3anc 1228 . 2  |-  ( ph  ->  ( NN  X.  {
0 } ) ( ~~> t `  ( TopOpen ` fld )
) 0 )
953, 87, 94lmmo 19644 1  |-  ( ph  ->  ( (  ~~>v  `  F
)  .ih  B )  =  0 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814   E.wrex 2815    C_ wss 3476   {csn 4027   <.cop 4033   class class class wbr 4447    |-> cmpt 4505    X. cxp 4997   dom cdm 4999    |` cres 5001    o. ccom 5003   Fun wfun 5580    Fn wfn 5581   -->wf 5582   ` cfv 5586  (class class class)co 6282    ^m cmap 7417   CCcc 9486   0cc0 9488   1c1 9489   NNcn 10532   ZZcz 10860   TopOpenctopn 14670   *Metcxmt 18171   MetOpencmopn 18176  ℂfldccnfld 18188  TopOnctopon 19159    Cn ccn 19488   ~~> tclm 19490   Hauscha 19572    tX ctx 19793   NrmCVeccnv 25150   ~Hchil 25509    +h cva 25510    .h csm 25511    .ih csp 25512   normhcno 25513    -h cmv 25515   Cauchyccau 25516    ~~>v chli 25517   _|_cort 25520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566  ax-addf 9567  ax-mulf 9568  ax-hilex 25589  ax-hfvadd 25590  ax-hvcom 25591  ax-hvass 25592  ax-hv0cl 25593  ax-hvaddid 25594  ax-hfvmul 25595  ax-hvmulid 25596  ax-hvmulass 25597  ax-hvdistr1 25598  ax-hvdistr2 25599  ax-hvmul0 25600  ax-hfi 25669  ax-his1 25672  ax-his2 25673  ax-his3 25674  ax-his4 25675  ax-hcompl 25792
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-of 6522  df-om 6679  df-1st 6781  df-2nd 6782  df-supp 6899  df-recs 7039  df-rdg 7073  df-1o 7127  df-2o 7128  df-oadd 7131  df-er 7308  df-map 7419  df-pm 7420  df-ixp 7467  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-fsupp 7826  df-fi 7867  df-sup 7897  df-oi 7931  df-card 8316  df-cda 8544  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10973  df-uz 11079  df-q 11179  df-rp 11217  df-xneg 11314  df-xadd 11315  df-xmul 11316  df-ioo 11529  df-icc 11532  df-fz 11669  df-fzo 11789  df-seq 12071  df-exp 12130  df-hash 12368  df-cj 12889  df-re 12890  df-im 12891  df-sqrt 13025  df-abs 13026  df-clim 13267  df-sum 13465  df-struct 14485  df-ndx 14486  df-slot 14487  df-base 14488  df-sets 14489  df-ress 14490  df-plusg 14561  df-mulr 14562  df-starv 14563  df-sca 14564  df-vsca 14565  df-ip 14566  df-tset 14567  df-ple 14568  df-ds 14570  df-unif 14571  df-hom 14572  df-cco 14573  df-rest 14671  df-topn 14672  df-0g 14690  df-gsum 14691  df-topgen 14692  df-pt 14693  df-prds 14696  df-xrs 14750  df-qtop 14755  df-imas 14756  df-xps 14758  df-mre 14834  df-mrc 14835  df-acs 14837  df-mnd 15725  df-submnd 15775  df-mulg 15858  df-cntz 16147  df-cmn 16593  df-psmet 18179  df-xmet 18180  df-met 18181  df-bl 18182  df-mopn 18183  df-cnfld 18189  df-top 19163  df-bases 19165  df-topon 19166  df-topsp 19167  df-cn 19491  df-cnp 19492  df-lm 19493  df-haus 19579  df-tx 19795  df-hmeo 19988  df-xms 20555  df-ms 20556  df-tms 20557  df-grpo 24866  df-gid 24867  df-ginv 24868  df-gdiv 24869  df-ablo 24957  df-vc 25112  df-nv 25158  df-va 25161  df-ba 25162  df-sm 25163  df-0v 25164  df-vs 25165  df-nmcv 25166  df-ims 25167  df-dip 25284  df-hnorm 25558  df-hvsub 25561  df-hlim 25562  df-sh 25797  df-oc 25843
This theorem is referenced by:  occl  25895
  Copyright terms: Public domain W3C validator