MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  obslbs Structured version   Unicode version

Theorem obslbs 18521
Description: An orthogonal basis is a linear basis iff the span of the basis elements is closed (which is usually not true). (Contributed by Mario Carneiro, 29-Oct-2015.)
Hypotheses
Ref Expression
obslbs.j  |-  J  =  (LBasis `  W )
obslbs.n  |-  N  =  ( LSpan `  W )
obslbs.c  |-  C  =  ( CSubSp `  W )
Assertion
Ref Expression
obslbs  |-  ( B  e.  (OBasis `  W
)  ->  ( B  e.  J  <->  ( N `  B )  e.  C
) )

Proof of Theorem obslbs
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 obsrcl 18514 . . . . . 6  |-  ( B  e.  (OBasis `  W
)  ->  W  e.  PreHil )
2 eqid 2460 . . . . . . 7  |-  ( Base `  W )  =  (
Base `  W )
32obsss 18515 . . . . . 6  |-  ( B  e.  (OBasis `  W
)  ->  B  C_  ( Base `  W ) )
4 eqid 2460 . . . . . . 7  |-  ( ocv `  W )  =  ( ocv `  W )
5 obslbs.n . . . . . . 7  |-  N  =  ( LSpan `  W )
62, 4, 5ocvlsp 18467 . . . . . 6  |-  ( ( W  e.  PreHil  /\  B  C_  ( Base `  W
) )  ->  (
( ocv `  W
) `  ( N `  B ) )  =  ( ( ocv `  W
) `  B )
)
71, 3, 6syl2anc 661 . . . . 5  |-  ( B  e.  (OBasis `  W
)  ->  ( ( ocv `  W ) `  ( N `  B ) )  =  ( ( ocv `  W ) `
 B ) )
87fveq2d 5861 . . . 4  |-  ( B  e.  (OBasis `  W
)  ->  ( ( ocv `  W ) `  ( ( ocv `  W
) `  ( N `  B ) ) )  =  ( ( ocv `  W ) `  (
( ocv `  W
) `  B )
) )
94, 2obs2ocv 18518 . . . 4  |-  ( B  e.  (OBasis `  W
)  ->  ( ( ocv `  W ) `  ( ( ocv `  W
) `  B )
)  =  ( Base `  W ) )
108, 9eqtrd 2501 . . 3  |-  ( B  e.  (OBasis `  W
)  ->  ( ( ocv `  W ) `  ( ( ocv `  W
) `  ( N `  B ) ) )  =  ( Base `  W
) )
1110eqeq2d 2474 . 2  |-  ( B  e.  (OBasis `  W
)  ->  ( ( N `  B )  =  ( ( ocv `  W ) `  (
( ocv `  W
) `  ( N `  B ) ) )  <-> 
( N `  B
)  =  ( Base `  W ) ) )
12 obslbs.c . . . 4  |-  C  =  ( CSubSp `  W )
134, 12iscss 18474 . . 3  |-  ( W  e.  PreHil  ->  ( ( N `
 B )  e.  C  <->  ( N `  B )  =  ( ( ocv `  W
) `  ( ( ocv `  W ) `  ( N `  B ) ) ) ) )
141, 13syl 16 . 2  |-  ( B  e.  (OBasis `  W
)  ->  ( ( N `  B )  e.  C  <->  ( N `  B )  =  ( ( ocv `  W
) `  ( ( ocv `  W ) `  ( N `  B ) ) ) ) )
15 phllvec 18424 . . . 4  |-  ( W  e.  PreHil  ->  W  e.  LVec )
161, 15syl 16 . . 3  |-  ( B  e.  (OBasis `  W
)  ->  W  e.  LVec )
17 pssnel 3885 . . . . . . 7  |-  ( x 
C.  B  ->  E. y
( y  e.  B  /\  -.  y  e.  x
) )
1817adantl 466 . . . . . 6  |-  ( ( B  e.  (OBasis `  W )  /\  x  C.  B )  ->  E. y
( y  e.  B  /\  -.  y  e.  x
) )
19 simpll 753 . . . . . . . . . . 11  |-  ( ( ( B  e.  (OBasis `  W )  /\  x  C.  B )  /\  y  e.  B )  ->  B  e.  (OBasis `  W )
)
20 pssss 3592 . . . . . . . . . . . 12  |-  ( x 
C.  B  ->  x  C_  B )
2120ad2antlr 726 . . . . . . . . . . 11  |-  ( ( ( B  e.  (OBasis `  W )  /\  x  C.  B )  /\  y  e.  B )  ->  x  C_  B )
22 simpr 461 . . . . . . . . . . 11  |-  ( ( ( B  e.  (OBasis `  W )  /\  x  C.  B )  /\  y  e.  B )  ->  y  e.  B )
234obselocv 18519 . . . . . . . . . . 11  |-  ( ( B  e.  (OBasis `  W )  /\  x  C_  B  /\  y  e.  B )  ->  (
y  e.  ( ( ocv `  W ) `
 x )  <->  -.  y  e.  x ) )
2419, 21, 22, 23syl3anc 1223 . . . . . . . . . 10  |-  ( ( ( B  e.  (OBasis `  W )  /\  x  C.  B )  /\  y  e.  B )  ->  (
y  e.  ( ( ocv `  W ) `
 x )  <->  -.  y  e.  x ) )
25 eqid 2460 . . . . . . . . . . . . . 14  |-  ( 0g
`  W )  =  ( 0g `  W
)
2625obsne0 18516 . . . . . . . . . . . . 13  |-  ( ( B  e.  (OBasis `  W )  /\  y  e.  B )  ->  y  =/=  ( 0g `  W
) )
2719, 22, 26syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( B  e.  (OBasis `  W )  /\  x  C.  B )  /\  y  e.  B )  ->  y  =/=  ( 0g `  W
) )
28 elsni 4045 . . . . . . . . . . . . 13  |-  ( y  e.  { ( 0g
`  W ) }  ->  y  =  ( 0g `  W ) )
2928necon3ai 2688 . . . . . . . . . . . 12  |-  ( y  =/=  ( 0g `  W )  ->  -.  y  e.  { ( 0g `  W ) } )
3027, 29syl 16 . . . . . . . . . . 11  |-  ( ( ( B  e.  (OBasis `  W )  /\  x  C.  B )  /\  y  e.  B )  ->  -.  y  e.  { ( 0g `  W ) } )
31 nelne1 2789 . . . . . . . . . . . 12  |-  ( ( y  e.  ( ( ocv `  W ) `
 x )  /\  -.  y  e.  { ( 0g `  W ) } )  ->  (
( ocv `  W
) `  x )  =/=  { ( 0g `  W ) } )
3231expcom 435 . . . . . . . . . . 11  |-  ( -.  y  e.  { ( 0g `  W ) }  ->  ( y  e.  ( ( ocv `  W
) `  x )  ->  ( ( ocv `  W
) `  x )  =/=  { ( 0g `  W ) } ) )
3330, 32syl 16 . . . . . . . . . 10  |-  ( ( ( B  e.  (OBasis `  W )  /\  x  C.  B )  /\  y  e.  B )  ->  (
y  e.  ( ( ocv `  W ) `
 x )  -> 
( ( ocv `  W
) `  x )  =/=  { ( 0g `  W ) } ) )
3424, 33sylbird 235 . . . . . . . . 9  |-  ( ( ( B  e.  (OBasis `  W )  /\  x  C.  B )  /\  y  e.  B )  ->  ( -.  y  e.  x  ->  ( ( ocv `  W
) `  x )  =/=  { ( 0g `  W ) } ) )
35 npss 3607 . . . . . . . . . . 11  |-  ( -.  ( N `  x
)  C.  ( Base `  W )  <->  ( ( N `  x )  C_  ( Base `  W
)  ->  ( N `  x )  =  (
Base `  W )
) )
36 phllmod 18425 . . . . . . . . . . . . . . 15  |-  ( W  e.  PreHil  ->  W  e.  LMod )
371, 36syl 16 . . . . . . . . . . . . . 14  |-  ( B  e.  (OBasis `  W
)  ->  W  e.  LMod )
3837ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  (OBasis `  W )  /\  x  C.  B )  /\  y  e.  B )  ->  W  e.  LMod )
393ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( B  e.  (OBasis `  W )  /\  x  C.  B )  /\  y  e.  B )  ->  B  C_  ( Base `  W
) )
4021, 39sstrd 3507 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  (OBasis `  W )  /\  x  C.  B )  /\  y  e.  B )  ->  x  C_  ( Base `  W
) )
412, 5lspssv 17405 . . . . . . . . . . . . 13  |-  ( ( W  e.  LMod  /\  x  C_  ( Base `  W
) )  ->  ( N `  x )  C_  ( Base `  W
) )
4238, 40, 41syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( B  e.  (OBasis `  W )  /\  x  C.  B )  /\  y  e.  B )  ->  ( N `  x )  C_  ( Base `  W
) )
43 fveq2 5857 . . . . . . . . . . . . 13  |-  ( ( N `  x )  =  ( Base `  W
)  ->  ( ( ocv `  W ) `  ( N `  x ) )  =  ( ( ocv `  W ) `
 ( Base `  W
) ) )
441ad2antrr 725 . . . . . . . . . . . . . . 15  |-  ( ( ( B  e.  (OBasis `  W )  /\  x  C.  B )  /\  y  e.  B )  ->  W  e.  PreHil )
452, 4, 5ocvlsp 18467 . . . . . . . . . . . . . . 15  |-  ( ( W  e.  PreHil  /\  x  C_  ( Base `  W
) )  ->  (
( ocv `  W
) `  ( N `  x ) )  =  ( ( ocv `  W
) `  x )
)
4644, 40, 45syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( ( B  e.  (OBasis `  W )  /\  x  C.  B )  /\  y  e.  B )  ->  (
( ocv `  W
) `  ( N `  x ) )  =  ( ( ocv `  W
) `  x )
)
472, 4, 25ocv1 18470 . . . . . . . . . . . . . . 15  |-  ( W  e.  PreHil  ->  ( ( ocv `  W ) `  ( Base `  W ) )  =  { ( 0g
`  W ) } )
4844, 47syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( B  e.  (OBasis `  W )  /\  x  C.  B )  /\  y  e.  B )  ->  (
( ocv `  W
) `  ( Base `  W ) )  =  { ( 0g `  W ) } )
4946, 48eqeq12d 2482 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  (OBasis `  W )  /\  x  C.  B )  /\  y  e.  B )  ->  (
( ( ocv `  W
) `  ( N `  x ) )  =  ( ( ocv `  W
) `  ( Base `  W ) )  <->  ( ( ocv `  W ) `  x )  =  {
( 0g `  W
) } ) )
5043, 49syl5ib 219 . . . . . . . . . . . 12  |-  ( ( ( B  e.  (OBasis `  W )  /\  x  C.  B )  /\  y  e.  B )  ->  (
( N `  x
)  =  ( Base `  W )  ->  (
( ocv `  W
) `  x )  =  { ( 0g `  W ) } ) )
5142, 50embantd 54 . . . . . . . . . . 11  |-  ( ( ( B  e.  (OBasis `  W )  /\  x  C.  B )  /\  y  e.  B )  ->  (
( ( N `  x )  C_  ( Base `  W )  -> 
( N `  x
)  =  ( Base `  W ) )  -> 
( ( ocv `  W
) `  x )  =  { ( 0g `  W ) } ) )
5235, 51syl5bi 217 . . . . . . . . . 10  |-  ( ( ( B  e.  (OBasis `  W )  /\  x  C.  B )  /\  y  e.  B )  ->  ( -.  ( N `  x
)  C.  ( Base `  W )  ->  (
( ocv `  W
) `  x )  =  { ( 0g `  W ) } ) )
5352necon1ad 2676 . . . . . . . . 9  |-  ( ( ( B  e.  (OBasis `  W )  /\  x  C.  B )  /\  y  e.  B )  ->  (
( ( ocv `  W
) `  x )  =/=  { ( 0g `  W ) }  ->  ( N `  x ) 
C.  ( Base `  W
) ) )
5434, 53syld 44 . . . . . . . 8  |-  ( ( ( B  e.  (OBasis `  W )  /\  x  C.  B )  /\  y  e.  B )  ->  ( -.  y  e.  x  ->  ( N `  x
)  C.  ( Base `  W ) ) )
5554expimpd 603 . . . . . . 7  |-  ( ( B  e.  (OBasis `  W )  /\  x  C.  B )  ->  (
( y  e.  B  /\  -.  y  e.  x
)  ->  ( N `  x )  C.  ( Base `  W ) ) )
5655exlimdv 1695 . . . . . 6  |-  ( ( B  e.  (OBasis `  W )  /\  x  C.  B )  ->  ( E. y ( y  e.  B  /\  -.  y  e.  x )  ->  ( N `  x )  C.  ( Base `  W
) ) )
5718, 56mpd 15 . . . . 5  |-  ( ( B  e.  (OBasis `  W )  /\  x  C.  B )  ->  ( N `  x )  C.  ( Base `  W
) )
5857ex 434 . . . 4  |-  ( B  e.  (OBasis `  W
)  ->  ( x  C.  B  ->  ( N `  x )  C.  ( Base `  W ) ) )
5958alrimiv 1690 . . 3  |-  ( B  e.  (OBasis `  W
)  ->  A. x
( x  C.  B  ->  ( N `  x
)  C.  ( Base `  W ) ) )
60 obslbs.j . . . . . 6  |-  J  =  (LBasis `  W )
612, 60, 5islbs3 17577 . . . . 5  |-  ( W  e.  LVec  ->  ( B  e.  J  <->  ( B  C_  ( Base `  W
)  /\  ( N `  B )  =  (
Base `  W )  /\  A. x ( x 
C.  B  ->  ( N `  x )  C.  ( Base `  W
) ) ) ) )
62 3anan32 980 . . . . 5  |-  ( ( B  C_  ( Base `  W )  /\  ( N `  B )  =  ( Base `  W
)  /\  A. x
( x  C.  B  ->  ( N `  x
)  C.  ( Base `  W ) ) )  <-> 
( ( B  C_  ( Base `  W )  /\  A. x ( x 
C.  B  ->  ( N `  x )  C.  ( Base `  W
) ) )  /\  ( N `  B )  =  ( Base `  W
) ) )
6361, 62syl6bb 261 . . . 4  |-  ( W  e.  LVec  ->  ( B  e.  J  <->  ( ( B  C_  ( Base `  W
)  /\  A. x
( x  C.  B  ->  ( N `  x
)  C.  ( Base `  W ) ) )  /\  ( N `  B )  =  (
Base `  W )
) ) )
6463baibd 902 . . 3  |-  ( ( W  e.  LVec  /\  ( B  C_  ( Base `  W
)  /\  A. x
( x  C.  B  ->  ( N `  x
)  C.  ( Base `  W ) ) ) )  ->  ( B  e.  J  <->  ( N `  B )  =  (
Base `  W )
) )
6516, 3, 59, 64syl12anc 1221 . 2  |-  ( B  e.  (OBasis `  W
)  ->  ( B  e.  J  <->  ( N `  B )  =  (
Base `  W )
) )
6611, 14, 653bitr4rd 286 1  |-  ( B  e.  (OBasis `  W
)  ->  ( B  e.  J  <->  ( N `  B )  e.  C
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 968   A.wal 1372    = wceq 1374   E.wex 1591    e. wcel 1762    =/= wne 2655    C_ wss 3469    C. wpss 3470   {csn 4020   ` cfv 5579   Basecbs 14479   0gc0g 14684   LModclmod 17288   LSpanclspn 17393  LBasisclbs 17496   LVecclvec 17524   PreHilcphl 18419   ocvcocv 18451   CSubSpccss 18452  OBasiscobs 18493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-1st 6774  df-2nd 6775  df-tpos 6945  df-recs 7032  df-rdg 7066  df-er 7301  df-map 7412  df-en 7507  df-dom 7508  df-sdom 7509  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-nn 10526  df-2 10583  df-3 10584  df-4 10585  df-5 10586  df-6 10587  df-7 10588  df-8 10589  df-ndx 14482  df-slot 14483  df-base 14484  df-sets 14485  df-ress 14486  df-plusg 14557  df-mulr 14558  df-sca 14560  df-vsca 14561  df-ip 14562  df-0g 14686  df-mnd 15721  df-mhm 15770  df-grp 15851  df-minusg 15852  df-sbg 15853  df-ghm 16053  df-mgp 16925  df-ur 16937  df-rng 16981  df-oppr 17049  df-dvdsr 17067  df-unit 17068  df-invr 17098  df-rnghom 17141  df-drng 17174  df-staf 17270  df-srng 17271  df-lmod 17290  df-lss 17355  df-lsp 17394  df-lmhm 17444  df-lbs 17497  df-lvec 17525  df-sra 17594  df-rgmod 17595  df-phl 18421  df-ocv 18454  df-css 18455  df-obs 18496
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator