MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  obslbs Structured version   Unicode version

Theorem obslbs 18155
Description: An orthogonal basis is a linear basis iff the span of the basis elements is closed (which is usually not true). (Contributed by Mario Carneiro, 29-Oct-2015.)
Hypotheses
Ref Expression
obslbs.j  |-  J  =  (LBasis `  W )
obslbs.n  |-  N  =  ( LSpan `  W )
obslbs.c  |-  C  =  ( CSubSp `  W )
Assertion
Ref Expression
obslbs  |-  ( B  e.  (OBasis `  W
)  ->  ( B  e.  J  <->  ( N `  B )  e.  C
) )

Proof of Theorem obslbs
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 obsrcl 18148 . . . . . 6  |-  ( B  e.  (OBasis `  W
)  ->  W  e.  PreHil )
2 eqid 2443 . . . . . . 7  |-  ( Base `  W )  =  (
Base `  W )
32obsss 18149 . . . . . 6  |-  ( B  e.  (OBasis `  W
)  ->  B  C_  ( Base `  W ) )
4 eqid 2443 . . . . . . 7  |-  ( ocv `  W )  =  ( ocv `  W )
5 obslbs.n . . . . . . 7  |-  N  =  ( LSpan `  W )
62, 4, 5ocvlsp 18101 . . . . . 6  |-  ( ( W  e.  PreHil  /\  B  C_  ( Base `  W
) )  ->  (
( ocv `  W
) `  ( N `  B ) )  =  ( ( ocv `  W
) `  B )
)
71, 3, 6syl2anc 661 . . . . 5  |-  ( B  e.  (OBasis `  W
)  ->  ( ( ocv `  W ) `  ( N `  B ) )  =  ( ( ocv `  W ) `
 B ) )
87fveq2d 5695 . . . 4  |-  ( B  e.  (OBasis `  W
)  ->  ( ( ocv `  W ) `  ( ( ocv `  W
) `  ( N `  B ) ) )  =  ( ( ocv `  W ) `  (
( ocv `  W
) `  B )
) )
94, 2obs2ocv 18152 . . . 4  |-  ( B  e.  (OBasis `  W
)  ->  ( ( ocv `  W ) `  ( ( ocv `  W
) `  B )
)  =  ( Base `  W ) )
108, 9eqtrd 2475 . . 3  |-  ( B  e.  (OBasis `  W
)  ->  ( ( ocv `  W ) `  ( ( ocv `  W
) `  ( N `  B ) ) )  =  ( Base `  W
) )
1110eqeq2d 2454 . 2  |-  ( B  e.  (OBasis `  W
)  ->  ( ( N `  B )  =  ( ( ocv `  W ) `  (
( ocv `  W
) `  ( N `  B ) ) )  <-> 
( N `  B
)  =  ( Base `  W ) ) )
12 obslbs.c . . . 4  |-  C  =  ( CSubSp `  W )
134, 12iscss 18108 . . 3  |-  ( W  e.  PreHil  ->  ( ( N `
 B )  e.  C  <->  ( N `  B )  =  ( ( ocv `  W
) `  ( ( ocv `  W ) `  ( N `  B ) ) ) ) )
141, 13syl 16 . 2  |-  ( B  e.  (OBasis `  W
)  ->  ( ( N `  B )  e.  C  <->  ( N `  B )  =  ( ( ocv `  W
) `  ( ( ocv `  W ) `  ( N `  B ) ) ) ) )
15 phllvec 18058 . . . 4  |-  ( W  e.  PreHil  ->  W  e.  LVec )
161, 15syl 16 . . 3  |-  ( B  e.  (OBasis `  W
)  ->  W  e.  LVec )
17 pssnel 3744 . . . . . . 7  |-  ( x 
C.  B  ->  E. y
( y  e.  B  /\  -.  y  e.  x
) )
1817adantl 466 . . . . . 6  |-  ( ( B  e.  (OBasis `  W )  /\  x  C.  B )  ->  E. y
( y  e.  B  /\  -.  y  e.  x
) )
19 simpll 753 . . . . . . . . . . 11  |-  ( ( ( B  e.  (OBasis `  W )  /\  x  C.  B )  /\  y  e.  B )  ->  B  e.  (OBasis `  W )
)
20 pssss 3451 . . . . . . . . . . . 12  |-  ( x 
C.  B  ->  x  C_  B )
2120ad2antlr 726 . . . . . . . . . . 11  |-  ( ( ( B  e.  (OBasis `  W )  /\  x  C.  B )  /\  y  e.  B )  ->  x  C_  B )
22 simpr 461 . . . . . . . . . . 11  |-  ( ( ( B  e.  (OBasis `  W )  /\  x  C.  B )  /\  y  e.  B )  ->  y  e.  B )
234obselocv 18153 . . . . . . . . . . 11  |-  ( ( B  e.  (OBasis `  W )  /\  x  C_  B  /\  y  e.  B )  ->  (
y  e.  ( ( ocv `  W ) `
 x )  <->  -.  y  e.  x ) )
2419, 21, 22, 23syl3anc 1218 . . . . . . . . . 10  |-  ( ( ( B  e.  (OBasis `  W )  /\  x  C.  B )  /\  y  e.  B )  ->  (
y  e.  ( ( ocv `  W ) `
 x )  <->  -.  y  e.  x ) )
25 eqid 2443 . . . . . . . . . . . . . 14  |-  ( 0g
`  W )  =  ( 0g `  W
)
2625obsne0 18150 . . . . . . . . . . . . 13  |-  ( ( B  e.  (OBasis `  W )  /\  y  e.  B )  ->  y  =/=  ( 0g `  W
) )
2719, 22, 26syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( B  e.  (OBasis `  W )  /\  x  C.  B )  /\  y  e.  B )  ->  y  =/=  ( 0g `  W
) )
28 elsni 3902 . . . . . . . . . . . . 13  |-  ( y  e.  { ( 0g
`  W ) }  ->  y  =  ( 0g `  W ) )
2928necon3ai 2651 . . . . . . . . . . . 12  |-  ( y  =/=  ( 0g `  W )  ->  -.  y  e.  { ( 0g `  W ) } )
3027, 29syl 16 . . . . . . . . . . 11  |-  ( ( ( B  e.  (OBasis `  W )  /\  x  C.  B )  /\  y  e.  B )  ->  -.  y  e.  { ( 0g `  W ) } )
31 nelne1 2701 . . . . . . . . . . . 12  |-  ( ( y  e.  ( ( ocv `  W ) `
 x )  /\  -.  y  e.  { ( 0g `  W ) } )  ->  (
( ocv `  W
) `  x )  =/=  { ( 0g `  W ) } )
3231expcom 435 . . . . . . . . . . 11  |-  ( -.  y  e.  { ( 0g `  W ) }  ->  ( y  e.  ( ( ocv `  W
) `  x )  ->  ( ( ocv `  W
) `  x )  =/=  { ( 0g `  W ) } ) )
3330, 32syl 16 . . . . . . . . . 10  |-  ( ( ( B  e.  (OBasis `  W )  /\  x  C.  B )  /\  y  e.  B )  ->  (
y  e.  ( ( ocv `  W ) `
 x )  -> 
( ( ocv `  W
) `  x )  =/=  { ( 0g `  W ) } ) )
3424, 33sylbird 235 . . . . . . . . 9  |-  ( ( ( B  e.  (OBasis `  W )  /\  x  C.  B )  /\  y  e.  B )  ->  ( -.  y  e.  x  ->  ( ( ocv `  W
) `  x )  =/=  { ( 0g `  W ) } ) )
35 npss 3466 . . . . . . . . . . 11  |-  ( -.  ( N `  x
)  C.  ( Base `  W )  <->  ( ( N `  x )  C_  ( Base `  W
)  ->  ( N `  x )  =  (
Base `  W )
) )
36 phllmod 18059 . . . . . . . . . . . . . . 15  |-  ( W  e.  PreHil  ->  W  e.  LMod )
371, 36syl 16 . . . . . . . . . . . . . 14  |-  ( B  e.  (OBasis `  W
)  ->  W  e.  LMod )
3837ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  (OBasis `  W )  /\  x  C.  B )  /\  y  e.  B )  ->  W  e.  LMod )
393ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( B  e.  (OBasis `  W )  /\  x  C.  B )  /\  y  e.  B )  ->  B  C_  ( Base `  W
) )
4021, 39sstrd 3366 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  (OBasis `  W )  /\  x  C.  B )  /\  y  e.  B )  ->  x  C_  ( Base `  W
) )
412, 5lspssv 17064 . . . . . . . . . . . . 13  |-  ( ( W  e.  LMod  /\  x  C_  ( Base `  W
) )  ->  ( N `  x )  C_  ( Base `  W
) )
4238, 40, 41syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( B  e.  (OBasis `  W )  /\  x  C.  B )  /\  y  e.  B )  ->  ( N `  x )  C_  ( Base `  W
) )
43 fveq2 5691 . . . . . . . . . . . . 13  |-  ( ( N `  x )  =  ( Base `  W
)  ->  ( ( ocv `  W ) `  ( N `  x ) )  =  ( ( ocv `  W ) `
 ( Base `  W
) ) )
441ad2antrr 725 . . . . . . . . . . . . . . 15  |-  ( ( ( B  e.  (OBasis `  W )  /\  x  C.  B )  /\  y  e.  B )  ->  W  e.  PreHil )
452, 4, 5ocvlsp 18101 . . . . . . . . . . . . . . 15  |-  ( ( W  e.  PreHil  /\  x  C_  ( Base `  W
) )  ->  (
( ocv `  W
) `  ( N `  x ) )  =  ( ( ocv `  W
) `  x )
)
4644, 40, 45syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( ( B  e.  (OBasis `  W )  /\  x  C.  B )  /\  y  e.  B )  ->  (
( ocv `  W
) `  ( N `  x ) )  =  ( ( ocv `  W
) `  x )
)
472, 4, 25ocv1 18104 . . . . . . . . . . . . . . 15  |-  ( W  e.  PreHil  ->  ( ( ocv `  W ) `  ( Base `  W ) )  =  { ( 0g
`  W ) } )
4844, 47syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( B  e.  (OBasis `  W )  /\  x  C.  B )  /\  y  e.  B )  ->  (
( ocv `  W
) `  ( Base `  W ) )  =  { ( 0g `  W ) } )
4946, 48eqeq12d 2457 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  (OBasis `  W )  /\  x  C.  B )  /\  y  e.  B )  ->  (
( ( ocv `  W
) `  ( N `  x ) )  =  ( ( ocv `  W
) `  ( Base `  W ) )  <->  ( ( ocv `  W ) `  x )  =  {
( 0g `  W
) } ) )
5043, 49syl5ib 219 . . . . . . . . . . . 12  |-  ( ( ( B  e.  (OBasis `  W )  /\  x  C.  B )  /\  y  e.  B )  ->  (
( N `  x
)  =  ( Base `  W )  ->  (
( ocv `  W
) `  x )  =  { ( 0g `  W ) } ) )
5142, 50embantd 54 . . . . . . . . . . 11  |-  ( ( ( B  e.  (OBasis `  W )  /\  x  C.  B )  /\  y  e.  B )  ->  (
( ( N `  x )  C_  ( Base `  W )  -> 
( N `  x
)  =  ( Base `  W ) )  -> 
( ( ocv `  W
) `  x )  =  { ( 0g `  W ) } ) )
5235, 51syl5bi 217 . . . . . . . . . 10  |-  ( ( ( B  e.  (OBasis `  W )  /\  x  C.  B )  /\  y  e.  B )  ->  ( -.  ( N `  x
)  C.  ( Base `  W )  ->  (
( ocv `  W
) `  x )  =  { ( 0g `  W ) } ) )
5352necon1ad 2678 . . . . . . . . 9  |-  ( ( ( B  e.  (OBasis `  W )  /\  x  C.  B )  /\  y  e.  B )  ->  (
( ( ocv `  W
) `  x )  =/=  { ( 0g `  W ) }  ->  ( N `  x ) 
C.  ( Base `  W
) ) )
5434, 53syld 44 . . . . . . . 8  |-  ( ( ( B  e.  (OBasis `  W )  /\  x  C.  B )  /\  y  e.  B )  ->  ( -.  y  e.  x  ->  ( N `  x
)  C.  ( Base `  W ) ) )
5554expimpd 603 . . . . . . 7  |-  ( ( B  e.  (OBasis `  W )  /\  x  C.  B )  ->  (
( y  e.  B  /\  -.  y  e.  x
)  ->  ( N `  x )  C.  ( Base `  W ) ) )
5655exlimdv 1690 . . . . . 6  |-  ( ( B  e.  (OBasis `  W )  /\  x  C.  B )  ->  ( E. y ( y  e.  B  /\  -.  y  e.  x )  ->  ( N `  x )  C.  ( Base `  W
) ) )
5718, 56mpd 15 . . . . 5  |-  ( ( B  e.  (OBasis `  W )  /\  x  C.  B )  ->  ( N `  x )  C.  ( Base `  W
) )
5857ex 434 . . . 4  |-  ( B  e.  (OBasis `  W
)  ->  ( x  C.  B  ->  ( N `  x )  C.  ( Base `  W ) ) )
5958alrimiv 1685 . . 3  |-  ( B  e.  (OBasis `  W
)  ->  A. x
( x  C.  B  ->  ( N `  x
)  C.  ( Base `  W ) ) )
60 obslbs.j . . . . . 6  |-  J  =  (LBasis `  W )
612, 60, 5islbs3 17236 . . . . 5  |-  ( W  e.  LVec  ->  ( B  e.  J  <->  ( B  C_  ( Base `  W
)  /\  ( N `  B )  =  (
Base `  W )  /\  A. x ( x 
C.  B  ->  ( N `  x )  C.  ( Base `  W
) ) ) ) )
62 3anan32 977 . . . . 5  |-  ( ( B  C_  ( Base `  W )  /\  ( N `  B )  =  ( Base `  W
)  /\  A. x
( x  C.  B  ->  ( N `  x
)  C.  ( Base `  W ) ) )  <-> 
( ( B  C_  ( Base `  W )  /\  A. x ( x 
C.  B  ->  ( N `  x )  C.  ( Base `  W
) ) )  /\  ( N `  B )  =  ( Base `  W
) ) )
6361, 62syl6bb 261 . . . 4  |-  ( W  e.  LVec  ->  ( B  e.  J  <->  ( ( B  C_  ( Base `  W
)  /\  A. x
( x  C.  B  ->  ( N `  x
)  C.  ( Base `  W ) ) )  /\  ( N `  B )  =  (
Base `  W )
) ) )
6463baibd 900 . . 3  |-  ( ( W  e.  LVec  /\  ( B  C_  ( Base `  W
)  /\  A. x
( x  C.  B  ->  ( N `  x
)  C.  ( Base `  W ) ) ) )  ->  ( B  e.  J  <->  ( N `  B )  =  (
Base `  W )
) )
6516, 3, 59, 64syl12anc 1216 . 2  |-  ( B  e.  (OBasis `  W
)  ->  ( B  e.  J  <->  ( N `  B )  =  (
Base `  W )
) )
6611, 14, 653bitr4rd 286 1  |-  ( B  e.  (OBasis `  W
)  ->  ( B  e.  J  <->  ( N `  B )  e.  C
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965   A.wal 1367    = wceq 1369   E.wex 1586    e. wcel 1756    =/= wne 2606    C_ wss 3328    C. wpss 3329   {csn 3877   ` cfv 5418   Basecbs 14174   0gc0g 14378   LModclmod 16948   LSpanclspn 17052  LBasisclbs 17155   LVecclvec 17183   PreHilcphl 18053   ocvcocv 18085   CSubSpccss 18086  OBasiscobs 18127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-1st 6577  df-2nd 6578  df-tpos 6745  df-recs 6832  df-rdg 6866  df-er 7101  df-map 7216  df-en 7311  df-dom 7312  df-sdom 7313  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-nn 10323  df-2 10380  df-3 10381  df-4 10382  df-5 10383  df-6 10384  df-7 10385  df-8 10386  df-ndx 14177  df-slot 14178  df-base 14179  df-sets 14180  df-ress 14181  df-plusg 14251  df-mulr 14252  df-sca 14254  df-vsca 14255  df-ip 14256  df-0g 14380  df-mnd 15415  df-mhm 15464  df-grp 15545  df-minusg 15546  df-sbg 15547  df-ghm 15745  df-mgp 16592  df-ur 16604  df-rng 16647  df-oppr 16715  df-dvdsr 16733  df-unit 16734  df-invr 16764  df-rnghom 16806  df-drng 16834  df-staf 16930  df-srng 16931  df-lmod 16950  df-lss 17014  df-lsp 17053  df-lmhm 17103  df-lbs 17156  df-lvec 17184  df-sra 17253  df-rgmod 17254  df-phl 18055  df-ocv 18088  df-css 18089  df-obs 18130
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator