MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oawordeulem Structured version   Unicode version

Theorem oawordeulem 7202
Description: Lemma for oawordex 7205. (Contributed by NM, 11-Dec-2004.)
Hypotheses
Ref Expression
oawordeulem.1  |-  A  e.  On
oawordeulem.2  |-  B  e.  On
oawordeulem.3  |-  S  =  { y  e.  On  |  B  C_  ( A  +o  y ) }
Assertion
Ref Expression
oawordeulem  |-  ( A 
C_  B  ->  E! x  e.  On  ( A  +o  x )  =  B )
Distinct variable groups:    x, y, A    x, B, y    x, S
Allowed substitution hint:    S( y)

Proof of Theorem oawordeulem
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 oawordeulem.3 . . . . . 6  |-  S  =  { y  e.  On  |  B  C_  ( A  +o  y ) }
2 ssrab2 3568 . . . . . 6  |-  { y  e.  On  |  B  C_  ( A  +o  y
) }  C_  On
31, 2eqsstri 3517 . . . . 5  |-  S  C_  On
4 oawordeulem.2 . . . . . . 7  |-  B  e.  On
5 oawordeulem.1 . . . . . . . 8  |-  A  e.  On
6 oaword2 7201 . . . . . . . 8  |-  ( ( B  e.  On  /\  A  e.  On )  ->  B  C_  ( A  +o  B ) )
74, 5, 6mp2an 672 . . . . . . 7  |-  B  C_  ( A  +o  B
)
8 oveq2 6286 . . . . . . . . 9  |-  ( y  =  B  ->  ( A  +o  y )  =  ( A  +o  B
) )
98sseq2d 3515 . . . . . . . 8  |-  ( y  =  B  ->  ( B  C_  ( A  +o  y )  <->  B  C_  ( A  +o  B ) ) )
109, 1elrab2 3243 . . . . . . 7  |-  ( B  e.  S  <->  ( B  e.  On  /\  B  C_  ( A  +o  B
) ) )
114, 7, 10mpbir2an 918 . . . . . 6  |-  B  e.  S
12 ne0i 3774 . . . . . 6  |-  ( B  e.  S  ->  S  =/=  (/) )
1311, 12ax-mp 5 . . . . 5  |-  S  =/=  (/)
14 oninton 6617 . . . . 5  |-  ( ( S  C_  On  /\  S  =/=  (/) )  ->  |^| S  e.  On )
153, 13, 14mp2an 672 . . . 4  |-  |^| S  e.  On
16 onzsl 6663 . . . . . . . 8  |-  ( |^| S  e.  On  <->  ( |^| S  =  (/)  \/  E. z  e.  On  |^| S  =  suc  z  \/  ( |^| S  e.  _V  /\  Lim  |^| S ) ) )
1715, 16mpbi 208 . . . . . . 7  |-  ( |^| S  =  (/)  \/  E. z  e.  On  |^| S  =  suc  z  \/  ( |^| S  e.  _V  /\  Lim  |^| S ) )
18 oveq2 6286 . . . . . . . . . . 11  |-  ( |^| S  =  (/)  ->  ( A  +o  |^| S )  =  ( A  +o  (/) ) )
19 oa0 7165 . . . . . . . . . . . 12  |-  ( A  e.  On  ->  ( A  +o  (/) )  =  A )
205, 19ax-mp 5 . . . . . . . . . . 11  |-  ( A  +o  (/) )  =  A
2118, 20syl6eq 2498 . . . . . . . . . 10  |-  ( |^| S  =  (/)  ->  ( A  +o  |^| S )  =  A )
2221sseq1d 3514 . . . . . . . . 9  |-  ( |^| S  =  (/)  ->  (
( A  +o  |^| S )  C_  B  <->  A 
C_  B ) )
2322biimprd 223 . . . . . . . 8  |-  ( |^| S  =  (/)  ->  ( A  C_  B  ->  ( A  +o  |^| S )  C_  B ) )
24 oveq2 6286 . . . . . . . . . . . 12  |-  ( |^| S  =  suc  z  -> 
( A  +o  |^| S )  =  ( A  +o  suc  z
) )
25 oasuc 7173 . . . . . . . . . . . . 13  |-  ( ( A  e.  On  /\  z  e.  On )  ->  ( A  +o  suc  z )  =  suc  ( A  +o  z
) )
265, 25mpan 670 . . . . . . . . . . . 12  |-  ( z  e.  On  ->  ( A  +o  suc  z )  =  suc  ( A  +o  z ) )
2724, 26sylan9eqr 2504 . . . . . . . . . . 11  |-  ( ( z  e.  On  /\  |^| S  =  suc  z
)  ->  ( A  +o  |^| S )  =  suc  ( A  +o  z ) )
28 vex 3096 . . . . . . . . . . . . . . 15  |-  z  e. 
_V
2928sucid 4944 . . . . . . . . . . . . . 14  |-  z  e. 
suc  z
30 eleq2 2514 . . . . . . . . . . . . . 14  |-  ( |^| S  =  suc  z  -> 
( z  e.  |^| S 
<->  z  e.  suc  z
) )
3129, 30mpbiri 233 . . . . . . . . . . . . 13  |-  ( |^| S  =  suc  z  -> 
z  e.  |^| S
)
3215oneli 4972 . . . . . . . . . . . . . 14  |-  ( z  e.  |^| S  ->  z  e.  On )
331inteqi 4272 . . . . . . . . . . . . . . . . 17  |-  |^| S  =  |^| { y  e.  On  |  B  C_  ( A  +o  y
) }
3433eleq2i 2519 . . . . . . . . . . . . . . . 16  |-  ( z  e.  |^| S  <->  z  e.  |^|
{ y  e.  On  |  B  C_  ( A  +o  y ) } )
35 oveq2 6286 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  z  ->  ( A  +o  y )  =  ( A  +o  z
) )
3635sseq2d 3515 . . . . . . . . . . . . . . . . 17  |-  ( y  =  z  ->  ( B  C_  ( A  +o  y )  <->  B  C_  ( A  +o  z ) ) )
3736onnminsb 6621 . . . . . . . . . . . . . . . 16  |-  ( z  e.  On  ->  (
z  e.  |^| { y  e.  On  |  B  C_  ( A  +o  y
) }  ->  -.  B  C_  ( A  +o  z ) ) )
3834, 37syl5bi 217 . . . . . . . . . . . . . . 15  |-  ( z  e.  On  ->  (
z  e.  |^| S  ->  -.  B  C_  ( A  +o  z ) ) )
39 oacl 7184 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  On  /\  z  e.  On )  ->  ( A  +o  z
)  e.  On )
405, 39mpan 670 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  On  ->  ( A  +o  z )  e.  On )
41 ontri1 4899 . . . . . . . . . . . . . . . . 17  |-  ( ( B  e.  On  /\  ( A  +o  z
)  e.  On )  ->  ( B  C_  ( A  +o  z
)  <->  -.  ( A  +o  z )  e.  B
) )
424, 40, 41sylancr 663 . . . . . . . . . . . . . . . 16  |-  ( z  e.  On  ->  ( B  C_  ( A  +o  z )  <->  -.  ( A  +o  z )  e.  B ) )
4342con2bid 329 . . . . . . . . . . . . . . 15  |-  ( z  e.  On  ->  (
( A  +o  z
)  e.  B  <->  -.  B  C_  ( A  +o  z
) ) )
4438, 43sylibrd 234 . . . . . . . . . . . . . 14  |-  ( z  e.  On  ->  (
z  e.  |^| S  ->  ( A  +o  z
)  e.  B ) )
4532, 44mpcom 36 . . . . . . . . . . . . 13  |-  ( z  e.  |^| S  ->  ( A  +o  z )  e.  B )
464onordi 4969 . . . . . . . . . . . . . 14  |-  Ord  B
47 ordsucss 6635 . . . . . . . . . . . . . 14  |-  ( Ord 
B  ->  ( ( A  +o  z )  e.  B  ->  suc  ( A  +o  z )  C_  B ) )
4846, 47ax-mp 5 . . . . . . . . . . . . 13  |-  ( ( A  +o  z )  e.  B  ->  suc  ( A  +o  z
)  C_  B )
4931, 45, 483syl 20 . . . . . . . . . . . 12  |-  ( |^| S  =  suc  z  ->  suc  ( A  +o  z
)  C_  B )
5049adantl 466 . . . . . . . . . . 11  |-  ( ( z  e.  On  /\  |^| S  =  suc  z
)  ->  suc  ( A  +o  z )  C_  B )
5127, 50eqsstrd 3521 . . . . . . . . . 10  |-  ( ( z  e.  On  /\  |^| S  =  suc  z
)  ->  ( A  +o  |^| S )  C_  B )
5251rexlimiva 2929 . . . . . . . . 9  |-  ( E. z  e.  On  |^| S  =  suc  z  -> 
( A  +o  |^| S )  C_  B
)
5352a1d 25 . . . . . . . 8  |-  ( E. z  e.  On  |^| S  =  suc  z  -> 
( A  C_  B  ->  ( A  +o  |^| S )  C_  B
) )
54 oalim 7181 . . . . . . . . . . 11  |-  ( ( A  e.  On  /\  ( |^| S  e.  _V  /\ 
Lim  |^| S ) )  ->  ( A  +o  |^| S )  =  U_ z  e.  |^| S ( A  +o  z ) )
555, 54mpan 670 . . . . . . . . . 10  |-  ( (
|^| S  e.  _V  /\ 
Lim  |^| S )  -> 
( A  +o  |^| S )  =  U_ z  e.  |^| S ( A  +o  z ) )
56 iunss 4353 . . . . . . . . . . 11  |-  ( U_ z  e.  |^| S ( A  +o  z ) 
C_  B  <->  A. z  e.  |^| S ( A  +o  z )  C_  B )
574onelssi 4973 . . . . . . . . . . . 12  |-  ( ( A  +o  z )  e.  B  ->  ( A  +o  z )  C_  B )
5845, 57syl 16 . . . . . . . . . . 11  |-  ( z  e.  |^| S  ->  ( A  +o  z )  C_  B )
5956, 58mprgbir 2805 . . . . . . . . . 10  |-  U_ z  e.  |^| S ( A  +o  z )  C_  B
6055, 59syl6eqss 3537 . . . . . . . . 9  |-  ( (
|^| S  e.  _V  /\ 
Lim  |^| S )  -> 
( A  +o  |^| S )  C_  B
)
6160a1d 25 . . . . . . . 8  |-  ( (
|^| S  e.  _V  /\ 
Lim  |^| S )  -> 
( A  C_  B  ->  ( A  +o  |^| S )  C_  B
) )
6223, 53, 613jaoi 1290 . . . . . . 7  |-  ( (
|^| S  =  (/)  \/ 
E. z  e.  On  |^| S  =  suc  z  \/  ( |^| S  e. 
_V  /\  Lim  |^| S
) )  ->  ( A  C_  B  ->  ( A  +o  |^| S )  C_  B ) )
6317, 62ax-mp 5 . . . . . 6  |-  ( A 
C_  B  ->  ( A  +o  |^| S )  C_  B )
649rspcev 3194 . . . . . . . . 9  |-  ( ( B  e.  On  /\  B  C_  ( A  +o  B ) )  ->  E. y  e.  On  B  C_  ( A  +o  y ) )
654, 7, 64mp2an 672 . . . . . . . 8  |-  E. y  e.  On  B  C_  ( A  +o  y )
66 nfcv 2603 . . . . . . . . . 10  |-  F/_ y B
67 nfcv 2603 . . . . . . . . . . 11  |-  F/_ y A
68 nfcv 2603 . . . . . . . . . . 11  |-  F/_ y  +o
69 nfrab1 3022 . . . . . . . . . . . 12  |-  F/_ y { y  e.  On  |  B  C_  ( A  +o  y ) }
7069nfint 4278 . . . . . . . . . . 11  |-  F/_ y |^| { y  e.  On  |  B  C_  ( A  +o  y ) }
7167, 68, 70nfov 6304 . . . . . . . . . 10  |-  F/_ y
( A  +o  |^| { y  e.  On  |  B  C_  ( A  +o  y ) } )
7266, 71nfss 3480 . . . . . . . . 9  |-  F/ y  B  C_  ( A  +o  |^| { y  e.  On  |  B  C_  ( A  +o  y
) } )
73 oveq2 6286 . . . . . . . . . 10  |-  ( y  =  |^| { y  e.  On  |  B  C_  ( A  +o  y
) }  ->  ( A  +o  y )  =  ( A  +o  |^| { y  e.  On  |  B  C_  ( A  +o  y ) } ) )
7473sseq2d 3515 . . . . . . . . 9  |-  ( y  =  |^| { y  e.  On  |  B  C_  ( A  +o  y
) }  ->  ( B  C_  ( A  +o  y )  <->  B  C_  ( A  +o  |^| { y  e.  On  |  B  C_  ( A  +o  y
) } ) ) )
7572, 74onminsb 6616 . . . . . . . 8  |-  ( E. y  e.  On  B  C_  ( A  +o  y
)  ->  B  C_  ( A  +o  |^| { y  e.  On  |  B  C_  ( A  +o  y
) } ) )
7665, 75ax-mp 5 . . . . . . 7  |-  B  C_  ( A  +o  |^| { y  e.  On  |  B  C_  ( A  +o  y
) } )
7733oveq2i 6289 . . . . . . 7  |-  ( A  +o  |^| S )  =  ( A  +o  |^| { y  e.  On  |  B  C_  ( A  +o  y ) } )
7876, 77sseqtr4i 3520 . . . . . 6  |-  B  C_  ( A  +o  |^| S
)
7963, 78jctir 538 . . . . 5  |-  ( A 
C_  B  ->  (
( A  +o  |^| S )  C_  B  /\  B  C_  ( A  +o  |^| S ) ) )
80 eqss 3502 . . . . 5  |-  ( ( A  +o  |^| S
)  =  B  <->  ( ( A  +o  |^| S )  C_  B  /\  B  C_  ( A  +o  |^| S ) ) )
8179, 80sylibr 212 . . . 4  |-  ( A 
C_  B  ->  ( A  +o  |^| S )  =  B )
82 oveq2 6286 . . . . . 6  |-  ( x  =  |^| S  -> 
( A  +o  x
)  =  ( A  +o  |^| S ) )
8382eqeq1d 2443 . . . . 5  |-  ( x  =  |^| S  -> 
( ( A  +o  x )  =  B  <-> 
( A  +o  |^| S )  =  B ) )
8483rspcev 3194 . . . 4  |-  ( (
|^| S  e.  On  /\  ( A  +o  |^| S )  =  B )  ->  E. x  e.  On  ( A  +o  x )  =  B )
8515, 81, 84sylancr 663 . . 3  |-  ( A 
C_  B  ->  E. x  e.  On  ( A  +o  x )  =  B )
86 eqtr3 2469 . . . . 5  |-  ( ( ( A  +o  x
)  =  B  /\  ( A  +o  y
)  =  B )  ->  ( A  +o  x )  =  ( A  +o  y ) )
87 oacan 7196 . . . . . 6  |-  ( ( A  e.  On  /\  x  e.  On  /\  y  e.  On )  ->  (
( A  +o  x
)  =  ( A  +o  y )  <->  x  =  y ) )
885, 87mp3an1 1310 . . . . 5  |-  ( ( x  e.  On  /\  y  e.  On )  ->  ( ( A  +o  x )  =  ( A  +o  y )  <-> 
x  =  y ) )
8986, 88syl5ib 219 . . . 4  |-  ( ( x  e.  On  /\  y  e.  On )  ->  ( ( ( A  +o  x )  =  B  /\  ( A  +o  y )  =  B )  ->  x  =  y ) )
9089rgen2a 2868 . . 3  |-  A. x  e.  On  A. y  e.  On  ( ( ( A  +o  x )  =  B  /\  ( A  +o  y )  =  B )  ->  x  =  y )
9185, 90jctir 538 . 2  |-  ( A 
C_  B  ->  ( E. x  e.  On  ( A  +o  x
)  =  B  /\  A. x  e.  On  A. y  e.  On  (
( ( A  +o  x )  =  B  /\  ( A  +o  y )  =  B )  ->  x  =  y ) ) )
92 oveq2 6286 . . . 4  |-  ( x  =  y  ->  ( A  +o  x )  =  ( A  +o  y
) )
9392eqeq1d 2443 . . 3  |-  ( x  =  y  ->  (
( A  +o  x
)  =  B  <->  ( A  +o  y )  =  B ) )
9493reu4 3277 . 2  |-  ( E! x  e.  On  ( A  +o  x )  =  B  <->  ( E. x  e.  On  ( A  +o  x )  =  B  /\  A. x  e.  On  A. y  e.  On  ( ( ( A  +o  x )  =  B  /\  ( A  +o  y )  =  B )  ->  x  =  y ) ) )
9591, 94sylibr 212 1  |-  ( A 
C_  B  ->  E! x  e.  On  ( A  +o  x )  =  B )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    \/ w3o 971    = wceq 1381    e. wcel 1802    =/= wne 2636   A.wral 2791   E.wrex 2792   E!wreu 2793   {crab 2795   _Vcvv 3093    C_ wss 3459   (/)c0 3768   |^|cint 4268   U_ciun 4312   Ord word 4864   Oncon0 4865   Lim wlim 4866   suc csuc 4867  (class class class)co 6278    +o coa 7126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-rep 4545  ax-sep 4555  ax-nul 4563  ax-pow 4612  ax-pr 4673  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-ral 2796  df-rex 2797  df-reu 2798  df-rmo 2799  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3419  df-dif 3462  df-un 3464  df-in 3466  df-ss 3473  df-pss 3475  df-nul 3769  df-if 3924  df-pw 3996  df-sn 4012  df-pr 4014  df-tp 4016  df-op 4018  df-uni 4232  df-int 4269  df-iun 4314  df-br 4435  df-opab 4493  df-mpt 4494  df-tr 4528  df-eprel 4778  df-id 4782  df-po 4787  df-so 4788  df-fr 4825  df-we 4827  df-ord 4868  df-on 4869  df-lim 4870  df-suc 4871  df-xp 4992  df-rel 4993  df-cnv 4994  df-co 4995  df-dm 4996  df-rn 4997  df-res 4998  df-ima 4999  df-iota 5538  df-fun 5577  df-fn 5578  df-f 5579  df-f1 5580  df-fo 5581  df-f1o 5582  df-fv 5583  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-om 6683  df-recs 7041  df-rdg 7075  df-oadd 7133
This theorem is referenced by:  oawordeu  7203
  Copyright terms: Public domain W3C validator