MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oawordeulem Structured version   Visualization version   Unicode version

Theorem oawordeulem 7273
Description: Lemma for oawordex 7276. (Contributed by NM, 11-Dec-2004.)
Hypotheses
Ref Expression
oawordeulem.1  |-  A  e.  On
oawordeulem.2  |-  B  e.  On
oawordeulem.3  |-  S  =  { y  e.  On  |  B  C_  ( A  +o  y ) }
Assertion
Ref Expression
oawordeulem  |-  ( A 
C_  B  ->  E! x  e.  On  ( A  +o  x )  =  B )
Distinct variable groups:    x, y, A    x, B, y    x, S
Allowed substitution hint:    S( y)

Proof of Theorem oawordeulem
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 oawordeulem.3 . . . . . 6  |-  S  =  { y  e.  On  |  B  C_  ( A  +o  y ) }
2 ssrab2 3500 . . . . . 6  |-  { y  e.  On  |  B  C_  ( A  +o  y
) }  C_  On
31, 2eqsstri 3448 . . . . 5  |-  S  C_  On
4 oawordeulem.2 . . . . . . 7  |-  B  e.  On
5 oawordeulem.1 . . . . . . . 8  |-  A  e.  On
6 oaword2 7272 . . . . . . . 8  |-  ( ( B  e.  On  /\  A  e.  On )  ->  B  C_  ( A  +o  B ) )
74, 5, 6mp2an 686 . . . . . . 7  |-  B  C_  ( A  +o  B
)
8 oveq2 6316 . . . . . . . . 9  |-  ( y  =  B  ->  ( A  +o  y )  =  ( A  +o  B
) )
98sseq2d 3446 . . . . . . . 8  |-  ( y  =  B  ->  ( B  C_  ( A  +o  y )  <->  B  C_  ( A  +o  B ) ) )
109, 1elrab2 3186 . . . . . . 7  |-  ( B  e.  S  <->  ( B  e.  On  /\  B  C_  ( A  +o  B
) ) )
114, 7, 10mpbir2an 934 . . . . . 6  |-  B  e.  S
1211ne0ii 3729 . . . . 5  |-  S  =/=  (/)
13 oninton 6646 . . . . 5  |-  ( ( S  C_  On  /\  S  =/=  (/) )  ->  |^| S  e.  On )
143, 12, 13mp2an 686 . . . 4  |-  |^| S  e.  On
15 onzsl 6692 . . . . . . . 8  |-  ( |^| S  e.  On  <->  ( |^| S  =  (/)  \/  E. z  e.  On  |^| S  =  suc  z  \/  ( |^| S  e.  _V  /\  Lim  |^| S ) ) )
1614, 15mpbi 213 . . . . . . 7  |-  ( |^| S  =  (/)  \/  E. z  e.  On  |^| S  =  suc  z  \/  ( |^| S  e.  _V  /\  Lim  |^| S ) )
17 oveq2 6316 . . . . . . . . . . 11  |-  ( |^| S  =  (/)  ->  ( A  +o  |^| S )  =  ( A  +o  (/) ) )
18 oa0 7236 . . . . . . . . . . . 12  |-  ( A  e.  On  ->  ( A  +o  (/) )  =  A )
195, 18ax-mp 5 . . . . . . . . . . 11  |-  ( A  +o  (/) )  =  A
2017, 19syl6eq 2521 . . . . . . . . . 10  |-  ( |^| S  =  (/)  ->  ( A  +o  |^| S )  =  A )
2120sseq1d 3445 . . . . . . . . 9  |-  ( |^| S  =  (/)  ->  (
( A  +o  |^| S )  C_  B  <->  A 
C_  B ) )
2221biimprd 231 . . . . . . . 8  |-  ( |^| S  =  (/)  ->  ( A  C_  B  ->  ( A  +o  |^| S )  C_  B ) )
23 oveq2 6316 . . . . . . . . . . . 12  |-  ( |^| S  =  suc  z  -> 
( A  +o  |^| S )  =  ( A  +o  suc  z
) )
24 oasuc 7244 . . . . . . . . . . . . 13  |-  ( ( A  e.  On  /\  z  e.  On )  ->  ( A  +o  suc  z )  =  suc  ( A  +o  z
) )
255, 24mpan 684 . . . . . . . . . . . 12  |-  ( z  e.  On  ->  ( A  +o  suc  z )  =  suc  ( A  +o  z ) )
2623, 25sylan9eqr 2527 . . . . . . . . . . 11  |-  ( ( z  e.  On  /\  |^| S  =  suc  z
)  ->  ( A  +o  |^| S )  =  suc  ( A  +o  z ) )
27 vex 3034 . . . . . . . . . . . . . . 15  |-  z  e. 
_V
2827sucid 5509 . . . . . . . . . . . . . 14  |-  z  e. 
suc  z
29 eleq2 2538 . . . . . . . . . . . . . 14  |-  ( |^| S  =  suc  z  -> 
( z  e.  |^| S 
<->  z  e.  suc  z
) )
3028, 29mpbiri 241 . . . . . . . . . . . . 13  |-  ( |^| S  =  suc  z  -> 
z  e.  |^| S
)
3114oneli 5537 . . . . . . . . . . . . . 14  |-  ( z  e.  |^| S  ->  z  e.  On )
321inteqi 4230 . . . . . . . . . . . . . . . . 17  |-  |^| S  =  |^| { y  e.  On  |  B  C_  ( A  +o  y
) }
3332eleq2i 2541 . . . . . . . . . . . . . . . 16  |-  ( z  e.  |^| S  <->  z  e.  |^|
{ y  e.  On  |  B  C_  ( A  +o  y ) } )
34 oveq2 6316 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  z  ->  ( A  +o  y )  =  ( A  +o  z
) )
3534sseq2d 3446 . . . . . . . . . . . . . . . . 17  |-  ( y  =  z  ->  ( B  C_  ( A  +o  y )  <->  B  C_  ( A  +o  z ) ) )
3635onnminsb 6650 . . . . . . . . . . . . . . . 16  |-  ( z  e.  On  ->  (
z  e.  |^| { y  e.  On  |  B  C_  ( A  +o  y
) }  ->  -.  B  C_  ( A  +o  z ) ) )
3733, 36syl5bi 225 . . . . . . . . . . . . . . 15  |-  ( z  e.  On  ->  (
z  e.  |^| S  ->  -.  B  C_  ( A  +o  z ) ) )
38 oacl 7255 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  On  /\  z  e.  On )  ->  ( A  +o  z
)  e.  On )
395, 38mpan 684 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  On  ->  ( A  +o  z )  e.  On )
40 ontri1 5464 . . . . . . . . . . . . . . . . 17  |-  ( ( B  e.  On  /\  ( A  +o  z
)  e.  On )  ->  ( B  C_  ( A  +o  z
)  <->  -.  ( A  +o  z )  e.  B
) )
414, 39, 40sylancr 676 . . . . . . . . . . . . . . . 16  |-  ( z  e.  On  ->  ( B  C_  ( A  +o  z )  <->  -.  ( A  +o  z )  e.  B ) )
4241con2bid 336 . . . . . . . . . . . . . . 15  |-  ( z  e.  On  ->  (
( A  +o  z
)  e.  B  <->  -.  B  C_  ( A  +o  z
) ) )
4337, 42sylibrd 242 . . . . . . . . . . . . . 14  |-  ( z  e.  On  ->  (
z  e.  |^| S  ->  ( A  +o  z
)  e.  B ) )
4431, 43mpcom 36 . . . . . . . . . . . . 13  |-  ( z  e.  |^| S  ->  ( A  +o  z )  e.  B )
454onordi 5534 . . . . . . . . . . . . . 14  |-  Ord  B
46 ordsucss 6664 . . . . . . . . . . . . . 14  |-  ( Ord 
B  ->  ( ( A  +o  z )  e.  B  ->  suc  ( A  +o  z )  C_  B ) )
4745, 46ax-mp 5 . . . . . . . . . . . . 13  |-  ( ( A  +o  z )  e.  B  ->  suc  ( A  +o  z
)  C_  B )
4830, 44, 473syl 18 . . . . . . . . . . . 12  |-  ( |^| S  =  suc  z  ->  suc  ( A  +o  z
)  C_  B )
4948adantl 473 . . . . . . . . . . 11  |-  ( ( z  e.  On  /\  |^| S  =  suc  z
)  ->  suc  ( A  +o  z )  C_  B )
5026, 49eqsstrd 3452 . . . . . . . . . 10  |-  ( ( z  e.  On  /\  |^| S  =  suc  z
)  ->  ( A  +o  |^| S )  C_  B )
5150rexlimiva 2868 . . . . . . . . 9  |-  ( E. z  e.  On  |^| S  =  suc  z  -> 
( A  +o  |^| S )  C_  B
)
5251a1d 25 . . . . . . . 8  |-  ( E. z  e.  On  |^| S  =  suc  z  -> 
( A  C_  B  ->  ( A  +o  |^| S )  C_  B
) )
53 oalim 7252 . . . . . . . . . . 11  |-  ( ( A  e.  On  /\  ( |^| S  e.  _V  /\ 
Lim  |^| S ) )  ->  ( A  +o  |^| S )  =  U_ z  e.  |^| S ( A  +o  z ) )
545, 53mpan 684 . . . . . . . . . 10  |-  ( (
|^| S  e.  _V  /\ 
Lim  |^| S )  -> 
( A  +o  |^| S )  =  U_ z  e.  |^| S ( A  +o  z ) )
55 iunss 4310 . . . . . . . . . . 11  |-  ( U_ z  e.  |^| S ( A  +o  z ) 
C_  B  <->  A. z  e.  |^| S ( A  +o  z )  C_  B )
564onelssi 5538 . . . . . . . . . . . 12  |-  ( ( A  +o  z )  e.  B  ->  ( A  +o  z )  C_  B )
5744, 56syl 17 . . . . . . . . . . 11  |-  ( z  e.  |^| S  ->  ( A  +o  z )  C_  B )
5855, 57mprgbir 2771 . . . . . . . . . 10  |-  U_ z  e.  |^| S ( A  +o  z )  C_  B
5954, 58syl6eqss 3468 . . . . . . . . 9  |-  ( (
|^| S  e.  _V  /\ 
Lim  |^| S )  -> 
( A  +o  |^| S )  C_  B
)
6059a1d 25 . . . . . . . 8  |-  ( (
|^| S  e.  _V  /\ 
Lim  |^| S )  -> 
( A  C_  B  ->  ( A  +o  |^| S )  C_  B
) )
6122, 52, 603jaoi 1357 . . . . . . 7  |-  ( (
|^| S  =  (/)  \/ 
E. z  e.  On  |^| S  =  suc  z  \/  ( |^| S  e. 
_V  /\  Lim  |^| S
) )  ->  ( A  C_  B  ->  ( A  +o  |^| S )  C_  B ) )
6216, 61ax-mp 5 . . . . . 6  |-  ( A 
C_  B  ->  ( A  +o  |^| S )  C_  B )
639rspcev 3136 . . . . . . . . 9  |-  ( ( B  e.  On  /\  B  C_  ( A  +o  B ) )  ->  E. y  e.  On  B  C_  ( A  +o  y ) )
644, 7, 63mp2an 686 . . . . . . . 8  |-  E. y  e.  On  B  C_  ( A  +o  y )
65 nfcv 2612 . . . . . . . . . 10  |-  F/_ y B
66 nfcv 2612 . . . . . . . . . . 11  |-  F/_ y A
67 nfcv 2612 . . . . . . . . . . 11  |-  F/_ y  +o
68 nfrab1 2957 . . . . . . . . . . . 12  |-  F/_ y { y  e.  On  |  B  C_  ( A  +o  y ) }
6968nfint 4236 . . . . . . . . . . 11  |-  F/_ y |^| { y  e.  On  |  B  C_  ( A  +o  y ) }
7066, 67, 69nfov 6334 . . . . . . . . . 10  |-  F/_ y
( A  +o  |^| { y  e.  On  |  B  C_  ( A  +o  y ) } )
7165, 70nfss 3411 . . . . . . . . 9  |-  F/ y  B  C_  ( A  +o  |^| { y  e.  On  |  B  C_  ( A  +o  y
) } )
72 oveq2 6316 . . . . . . . . . 10  |-  ( y  =  |^| { y  e.  On  |  B  C_  ( A  +o  y
) }  ->  ( A  +o  y )  =  ( A  +o  |^| { y  e.  On  |  B  C_  ( A  +o  y ) } ) )
7372sseq2d 3446 . . . . . . . . 9  |-  ( y  =  |^| { y  e.  On  |  B  C_  ( A  +o  y
) }  ->  ( B  C_  ( A  +o  y )  <->  B  C_  ( A  +o  |^| { y  e.  On  |  B  C_  ( A  +o  y
) } ) ) )
7471, 73onminsb 6645 . . . . . . . 8  |-  ( E. y  e.  On  B  C_  ( A  +o  y
)  ->  B  C_  ( A  +o  |^| { y  e.  On  |  B  C_  ( A  +o  y
) } ) )
7564, 74ax-mp 5 . . . . . . 7  |-  B  C_  ( A  +o  |^| { y  e.  On  |  B  C_  ( A  +o  y
) } )
7632oveq2i 6319 . . . . . . 7  |-  ( A  +o  |^| S )  =  ( A  +o  |^| { y  e.  On  |  B  C_  ( A  +o  y ) } )
7775, 76sseqtr4i 3451 . . . . . 6  |-  B  C_  ( A  +o  |^| S
)
7862, 77jctir 547 . . . . 5  |-  ( A 
C_  B  ->  (
( A  +o  |^| S )  C_  B  /\  B  C_  ( A  +o  |^| S ) ) )
79 eqss 3433 . . . . 5  |-  ( ( A  +o  |^| S
)  =  B  <->  ( ( A  +o  |^| S )  C_  B  /\  B  C_  ( A  +o  |^| S ) ) )
8078, 79sylibr 217 . . . 4  |-  ( A 
C_  B  ->  ( A  +o  |^| S )  =  B )
81 oveq2 6316 . . . . . 6  |-  ( x  =  |^| S  -> 
( A  +o  x
)  =  ( A  +o  |^| S ) )
8281eqeq1d 2473 . . . . 5  |-  ( x  =  |^| S  -> 
( ( A  +o  x )  =  B  <-> 
( A  +o  |^| S )  =  B ) )
8382rspcev 3136 . . . 4  |-  ( (
|^| S  e.  On  /\  ( A  +o  |^| S )  =  B )  ->  E. x  e.  On  ( A  +o  x )  =  B )
8414, 80, 83sylancr 676 . . 3  |-  ( A 
C_  B  ->  E. x  e.  On  ( A  +o  x )  =  B )
85 eqtr3 2492 . . . . 5  |-  ( ( ( A  +o  x
)  =  B  /\  ( A  +o  y
)  =  B )  ->  ( A  +o  x )  =  ( A  +o  y ) )
86 oacan 7267 . . . . . 6  |-  ( ( A  e.  On  /\  x  e.  On  /\  y  e.  On )  ->  (
( A  +o  x
)  =  ( A  +o  y )  <->  x  =  y ) )
875, 86mp3an1 1377 . . . . 5  |-  ( ( x  e.  On  /\  y  e.  On )  ->  ( ( A  +o  x )  =  ( A  +o  y )  <-> 
x  =  y ) )
8885, 87syl5ib 227 . . . 4  |-  ( ( x  e.  On  /\  y  e.  On )  ->  ( ( ( A  +o  x )  =  B  /\  ( A  +o  y )  =  B )  ->  x  =  y ) )
8988rgen2a 2820 . . 3  |-  A. x  e.  On  A. y  e.  On  ( ( ( A  +o  x )  =  B  /\  ( A  +o  y )  =  B )  ->  x  =  y )
9084, 89jctir 547 . 2  |-  ( A 
C_  B  ->  ( E. x  e.  On  ( A  +o  x
)  =  B  /\  A. x  e.  On  A. y  e.  On  (
( ( A  +o  x )  =  B  /\  ( A  +o  y )  =  B )  ->  x  =  y ) ) )
91 oveq2 6316 . . . 4  |-  ( x  =  y  ->  ( A  +o  x )  =  ( A  +o  y
) )
9291eqeq1d 2473 . . 3  |-  ( x  =  y  ->  (
( A  +o  x
)  =  B  <->  ( A  +o  y )  =  B ) )
9392reu4 3220 . 2  |-  ( E! x  e.  On  ( A  +o  x )  =  B  <->  ( E. x  e.  On  ( A  +o  x )  =  B  /\  A. x  e.  On  A. y  e.  On  ( ( ( A  +o  x )  =  B  /\  ( A  +o  y )  =  B )  ->  x  =  y ) ) )
9490, 93sylibr 217 1  |-  ( A 
C_  B  ->  E! x  e.  On  ( A  +o  x )  =  B )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    /\ wa 376    \/ w3o 1006    = wceq 1452    e. wcel 1904    =/= wne 2641   A.wral 2756   E.wrex 2757   E!wreu 2758   {crab 2760   _Vcvv 3031    C_ wss 3390   (/)c0 3722   |^|cint 4226   U_ciun 4269   Ord word 5429   Oncon0 5430   Lim wlim 5431   suc csuc 5432  (class class class)co 6308    +o coa 7197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-oadd 7204
This theorem is referenced by:  oawordeu  7274
  Copyright terms: Public domain W3C validator