MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oawordeu Structured version   Unicode version

Theorem oawordeu 7222
Description: Existence theorem for weak ordering of ordinal sum. Proposition 8.8 of [TakeutiZaring] p. 59. (Contributed by NM, 11-Dec-2004.)
Assertion
Ref Expression
oawordeu  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  A  C_  B
)  ->  E! x  e.  On  ( A  +o  x )  =  B )
Distinct variable groups:    x, A    x, B

Proof of Theorem oawordeu
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 sseq1 3520 . . . 4  |-  ( A  =  if ( A  e.  On ,  A ,  (/) )  ->  ( A  C_  B  <->  if ( A  e.  On ,  A ,  (/) )  C_  B ) )
2 oveq1 6303 . . . . . 6  |-  ( A  =  if ( A  e.  On ,  A ,  (/) )  ->  ( A  +o  x )  =  ( if ( A  e.  On ,  A ,  (/) )  +o  x
) )
32eqeq1d 2459 . . . . 5  |-  ( A  =  if ( A  e.  On ,  A ,  (/) )  ->  (
( A  +o  x
)  =  B  <->  ( if ( A  e.  On ,  A ,  (/) )  +o  x )  =  B ) )
43reubidv 3042 . . . 4  |-  ( A  =  if ( A  e.  On ,  A ,  (/) )  ->  ( E! x  e.  On  ( A  +o  x
)  =  B  <->  E! x  e.  On  ( if ( A  e.  On ,  A ,  (/) )  +o  x )  =  B ) )
51, 4imbi12d 320 . . 3  |-  ( A  =  if ( A  e.  On ,  A ,  (/) )  ->  (
( A  C_  B  ->  E! x  e.  On  ( A  +o  x
)  =  B )  <-> 
( if ( A  e.  On ,  A ,  (/) )  C_  B  ->  E! x  e.  On  ( if ( A  e.  On ,  A ,  (/) )  +o  x )  =  B ) ) )
6 sseq2 3521 . . . 4  |-  ( B  =  if ( B  e.  On ,  B ,  (/) )  ->  ( if ( A  e.  On ,  A ,  (/) )  C_  B 
<->  if ( A  e.  On ,  A ,  (/) )  C_  if ( B  e.  On ,  B ,  (/) ) ) )
7 eqeq2 2472 . . . . 5  |-  ( B  =  if ( B  e.  On ,  B ,  (/) )  ->  (
( if ( A  e.  On ,  A ,  (/) )  +o  x
)  =  B  <->  ( if ( A  e.  On ,  A ,  (/) )  +o  x )  =  if ( B  e.  On ,  B ,  (/) ) ) )
87reubidv 3042 . . . 4  |-  ( B  =  if ( B  e.  On ,  B ,  (/) )  ->  ( E! x  e.  On  ( if ( A  e.  On ,  A ,  (/) )  +o  x )  =  B  <->  E! x  e.  On  ( if ( A  e.  On ,  A ,  (/) )  +o  x )  =  if ( B  e.  On ,  B ,  (/) ) ) )
96, 8imbi12d 320 . . 3  |-  ( B  =  if ( B  e.  On ,  B ,  (/) )  ->  (
( if ( A  e.  On ,  A ,  (/) )  C_  B  ->  E! x  e.  On  ( if ( A  e.  On ,  A ,  (/) )  +o  x )  =  B )  <->  ( if ( A  e.  On ,  A ,  (/) )  C_  if ( B  e.  On ,  B ,  (/) )  ->  E! x  e.  On  ( if ( A  e.  On ,  A ,  (/) )  +o  x )  =  if ( B  e.  On ,  B ,  (/) ) ) ) )
10 0elon 4940 . . . . 5  |-  (/)  e.  On
1110elimel 4007 . . . 4  |-  if ( A  e.  On ,  A ,  (/) )  e.  On
1210elimel 4007 . . . 4  |-  if ( B  e.  On ,  B ,  (/) )  e.  On
13 eqid 2457 . . . 4  |-  { y  e.  On  |  if ( B  e.  On ,  B ,  (/) )  C_  ( if ( A  e.  On ,  A ,  (/) )  +o  y ) }  =  { y  e.  On  |  if ( B  e.  On ,  B ,  (/) )  C_  ( if ( A  e.  On ,  A ,  (/) )  +o  y ) }
1411, 12, 13oawordeulem 7221 . . 3  |-  ( if ( A  e.  On ,  A ,  (/) )  C_  if ( B  e.  On ,  B ,  (/) )  ->  E! x  e.  On  ( if ( A  e.  On ,  A ,  (/) )  +o  x )  =  if ( B  e.  On ,  B ,  (/) ) )
155, 9, 14dedth2h 3997 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  C_  B  ->  E! x  e.  On  ( A  +o  x
)  =  B ) )
1615imp 429 1  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  A  C_  B
)  ->  E! x  e.  On  ( A  +o  x )  =  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1395    e. wcel 1819   E!wreu 2809   {crab 2811    C_ wss 3471   (/)c0 3793   ifcif 3944   Oncon0 4887  (class class class)co 6296    +o coa 7145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-recs 7060  df-rdg 7094  df-oadd 7152
This theorem is referenced by:  oawordex  7224  oaf1o  7230  oaabs  7311  oaabs2  7312
  Copyright terms: Public domain W3C validator