MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oaword Structured version   Unicode version

Theorem oaword 7198
Description: Weak ordering property of ordinal addition. (Contributed by NM, 6-Dec-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
oaword  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( A  C_  B  <->  ( C  +o  A )  C_  ( C  +o  B ) ) )

Proof of Theorem oaword
StepHypRef Expression
1 oaord 7196 . . . 4  |-  ( ( B  e.  On  /\  A  e.  On  /\  C  e.  On )  ->  ( B  e.  A  <->  ( C  +o  B )  e.  ( C  +o  A ) ) )
213com12 1200 . . 3  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( B  e.  A  <->  ( C  +o  B )  e.  ( C  +o  A ) ) )
32notbid 294 . 2  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( -.  B  e.  A  <->  -.  ( C  +o  B
)  e.  ( C  +o  A ) ) )
4 ontri1 4912 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  C_  B  <->  -.  B  e.  A ) )
543adant3 1016 . 2  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( A  C_  B  <->  -.  B  e.  A ) )
6 oacl 7185 . . . . 5  |-  ( ( C  e.  On  /\  A  e.  On )  ->  ( C  +o  A
)  e.  On )
76ancoms 453 . . . 4  |-  ( ( A  e.  On  /\  C  e.  On )  ->  ( C  +o  A
)  e.  On )
873adant2 1015 . . 3  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( C  +o  A )  e.  On )
9 oacl 7185 . . . . 5  |-  ( ( C  e.  On  /\  B  e.  On )  ->  ( C  +o  B
)  e.  On )
109ancoms 453 . . . 4  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( C  +o  B
)  e.  On )
11103adant1 1014 . . 3  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( C  +o  B )  e.  On )
12 ontri1 4912 . . 3  |-  ( ( ( C  +o  A
)  e.  On  /\  ( C  +o  B
)  e.  On )  ->  ( ( C  +o  A )  C_  ( C  +o  B
)  <->  -.  ( C  +o  B )  e.  ( C  +o  A ) ) )
138, 11, 12syl2anc 661 . 2  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  (
( C  +o  A
)  C_  ( C  +o  B )  <->  -.  ( C  +o  B )  e.  ( C  +o  A
) ) )
143, 5, 133bitr4d 285 1  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( A  C_  B  <->  ( C  +o  A )  C_  ( C  +o  B ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ w3a 973    e. wcel 1767    C_ wss 3476   Oncon0 4878  (class class class)co 6284    +o coa 7127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-recs 7042  df-rdg 7076  df-oadd 7134
This theorem is referenced by:  oaword1  7201  oaass  7210  omwordri  7221  omlimcl  7227  oaabs2  7294
  Copyright terms: Public domain W3C validator