MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oasuc Structured version   Unicode version

Theorem oasuc 6960
Description: Addition with successor. Definition 8.1 of [TakeutiZaring] p. 56. (Contributed by NM, 3-May-1995.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
oasuc  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  suc  B )  =  suc  ( A  +o  B ) )

Proof of Theorem oasuc
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 rdgsuc 6876 . . 3  |-  ( B  e.  On  ->  ( rec ( ( x  e. 
_V  |->  suc  x ) ,  A ) `  suc  B )  =  ( ( x  e.  _V  |->  suc  x ) `  ( rec ( ( x  e. 
_V  |->  suc  x ) ,  A ) `  B
) ) )
21adantl 463 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( rec ( ( x  e.  _V  |->  suc  x ) ,  A
) `  suc  B )  =  ( ( x  e.  _V  |->  suc  x
) `  ( rec ( ( x  e. 
_V  |->  suc  x ) ,  A ) `  B
) ) )
3 suceloni 6423 . . 3  |-  ( B  e.  On  ->  suc  B  e.  On )
4 oav 6947 . . 3  |-  ( ( A  e.  On  /\  suc  B  e.  On )  ->  ( A  +o  suc  B )  =  ( rec ( ( x  e.  _V  |->  suc  x
) ,  A ) `
 suc  B )
)
53, 4sylan2 471 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  suc  B )  =  ( rec ( ( x  e. 
_V  |->  suc  x ) ,  A ) `  suc  B ) )
6 ovex 6115 . . . 4  |-  ( A  +o  B )  e. 
_V
7 suceq 4780 . . . . 5  |-  ( x  =  ( A  +o  B )  ->  suc  x  =  suc  ( A  +o  B ) )
8 eqid 2441 . . . . 5  |-  ( x  e.  _V  |->  suc  x
)  =  ( x  e.  _V  |->  suc  x
)
96sucex 6421 . . . . 5  |-  suc  ( A  +o  B )  e. 
_V
107, 8, 9fvmpt 5771 . . . 4  |-  ( ( A  +o  B )  e.  _V  ->  (
( x  e.  _V  |->  suc  x ) `  ( A  +o  B ) )  =  suc  ( A  +o  B ) )
116, 10ax-mp 5 . . 3  |-  ( ( x  e.  _V  |->  suc  x ) `  ( A  +o  B ) )  =  suc  ( A  +o  B )
12 oav 6947 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  B
)  =  ( rec ( ( x  e. 
_V  |->  suc  x ) ,  A ) `  B
) )
1312fveq2d 5692 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( x  e. 
_V  |->  suc  x ) `  ( A  +o  B
) )  =  ( ( x  e.  _V  |->  suc  x ) `  ( rec ( ( x  e. 
_V  |->  suc  x ) ,  A ) `  B
) ) )
1411, 13syl5eqr 2487 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  suc  ( A  +o  B )  =  ( ( x  e.  _V  |->  suc  x ) `  ( rec ( ( x  e. 
_V  |->  suc  x ) ,  A ) `  B
) ) )
152, 5, 143eqtr4d 2483 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  suc  B )  =  suc  ( A  +o  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1364    e. wcel 1761   _Vcvv 2970    e. cmpt 4347   Oncon0 4715   suc csuc 4717   ` cfv 5415  (class class class)co 6090   reccrdg 6861    +o coa 6913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-recs 6828  df-rdg 6862  df-oadd 6920
This theorem is referenced by:  oacl  6971  oa0r  6974  oaordi  6981  oawordri  6985  oawordeulem  6989  oalimcl  6995  oaass  6996  oarec  6997  odi  7014  oeoalem  7031
  Copyright terms: Public domain W3C validator