MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oasuc Structured version   Unicode version

Theorem oasuc 7176
Description: Addition with successor. Definition 8.1 of [TakeutiZaring] p. 56. (Contributed by NM, 3-May-1995.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
oasuc  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  suc  B )  =  suc  ( A  +o  B ) )

Proof of Theorem oasuc
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 rdgsuc 7092 . . 3  |-  ( B  e.  On  ->  ( rec ( ( x  e. 
_V  |->  suc  x ) ,  A ) `  suc  B )  =  ( ( x  e.  _V  |->  suc  x ) `  ( rec ( ( x  e. 
_V  |->  suc  x ) ,  A ) `  B
) ) )
21adantl 466 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( rec ( ( x  e.  _V  |->  suc  x ) ,  A
) `  suc  B )  =  ( ( x  e.  _V  |->  suc  x
) `  ( rec ( ( x  e. 
_V  |->  suc  x ) ,  A ) `  B
) ) )
3 suceloni 6633 . . 3  |-  ( B  e.  On  ->  suc  B  e.  On )
4 oav 7163 . . 3  |-  ( ( A  e.  On  /\  suc  B  e.  On )  ->  ( A  +o  suc  B )  =  ( rec ( ( x  e.  _V  |->  suc  x
) ,  A ) `
 suc  B )
)
53, 4sylan2 474 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  suc  B )  =  ( rec ( ( x  e. 
_V  |->  suc  x ) ,  A ) `  suc  B ) )
6 ovex 6309 . . . 4  |-  ( A  +o  B )  e. 
_V
7 suceq 4933 . . . . 5  |-  ( x  =  ( A  +o  B )  ->  suc  x  =  suc  ( A  +o  B ) )
8 eqid 2443 . . . . 5  |-  ( x  e.  _V  |->  suc  x
)  =  ( x  e.  _V  |->  suc  x
)
96sucex 6631 . . . . 5  |-  suc  ( A  +o  B )  e. 
_V
107, 8, 9fvmpt 5941 . . . 4  |-  ( ( A  +o  B )  e.  _V  ->  (
( x  e.  _V  |->  suc  x ) `  ( A  +o  B ) )  =  suc  ( A  +o  B ) )
116, 10ax-mp 5 . . 3  |-  ( ( x  e.  _V  |->  suc  x ) `  ( A  +o  B ) )  =  suc  ( A  +o  B )
12 oav 7163 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  B
)  =  ( rec ( ( x  e. 
_V  |->  suc  x ) ,  A ) `  B
) )
1312fveq2d 5860 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( x  e. 
_V  |->  suc  x ) `  ( A  +o  B
) )  =  ( ( x  e.  _V  |->  suc  x ) `  ( rec ( ( x  e. 
_V  |->  suc  x ) ,  A ) `  B
) ) )
1411, 13syl5eqr 2498 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  suc  ( A  +o  B )  =  ( ( x  e.  _V  |->  suc  x ) `  ( rec ( ( x  e. 
_V  |->  suc  x ) ,  A ) `  B
) ) )
152, 5, 143eqtr4d 2494 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  suc  B )  =  suc  ( A  +o  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1383    e. wcel 1804   _Vcvv 3095    |-> cmpt 4495   Oncon0 4868   suc csuc 4870   ` cfv 5578  (class class class)co 6281   reccrdg 7077    +o coa 7129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-reu 2800  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-recs 7044  df-rdg 7078  df-oadd 7136
This theorem is referenced by:  oacl  7187  oa0r  7190  oaordi  7197  oawordri  7201  oawordeulem  7205  oalimcl  7211  oaass  7212  oarec  7213  odi  7230  oeoalem  7247
  Copyright terms: Public domain W3C validator