MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oarec Structured version   Unicode version

Theorem oarec 7223
Description: Recursive definition of ordinal addition. Exercise 25 of [Enderton] p. 240. (Contributed by NM, 26-Dec-2004.) (Revised by Mario Carneiro, 30-May-2015.)
Assertion
Ref Expression
oarec  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  B
)  =  ( A  u.  ran  ( x  e.  B  |->  ( A  +o  x ) ) ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem oarec
Dummy variables  y 
z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6303 . . . 4  |-  ( z  =  (/)  ->  ( A  +o  z )  =  ( A  +o  (/) ) )
2 mpteq1 4533 . . . . . . . 8  |-  ( z  =  (/)  ->  ( x  e.  z  |->  ( A  +o  x ) )  =  ( x  e.  (/)  |->  ( A  +o  x ) ) )
3 mpt0 5714 . . . . . . . 8  |-  ( x  e.  (/)  |->  ( A  +o  x ) )  =  (/)
42, 3syl6eq 2524 . . . . . . 7  |-  ( z  =  (/)  ->  ( x  e.  z  |->  ( A  +o  x ) )  =  (/) )
54rneqd 5236 . . . . . 6  |-  ( z  =  (/)  ->  ran  (
x  e.  z  |->  ( A  +o  x ) )  =  ran  (/) )
6 rn0 5260 . . . . . 6  |-  ran  (/)  =  (/)
75, 6syl6eq 2524 . . . . 5  |-  ( z  =  (/)  ->  ran  (
x  e.  z  |->  ( A  +o  x ) )  =  (/) )
87uneq2d 3663 . . . 4  |-  ( z  =  (/)  ->  ( A  u.  ran  ( x  e.  z  |->  ( A  +o  x ) ) )  =  ( A  u.  (/) ) )
91, 8eqeq12d 2489 . . 3  |-  ( z  =  (/)  ->  ( ( A  +o  z )  =  ( A  u.  ran  ( x  e.  z 
|->  ( A  +o  x
) ) )  <->  ( A  +o  (/) )  =  ( A  u.  (/) ) ) )
10 oveq2 6303 . . . 4  |-  ( z  =  w  ->  ( A  +o  z )  =  ( A  +o  w
) )
11 mpteq1 4533 . . . . . 6  |-  ( z  =  w  ->  (
x  e.  z  |->  ( A  +o  x ) )  =  ( x  e.  w  |->  ( A  +o  x ) ) )
1211rneqd 5236 . . . . 5  |-  ( z  =  w  ->  ran  ( x  e.  z  |->  ( A  +o  x
) )  =  ran  ( x  e.  w  |->  ( A  +o  x
) ) )
1312uneq2d 3663 . . . 4  |-  ( z  =  w  ->  ( A  u.  ran  ( x  e.  z  |->  ( A  +o  x ) ) )  =  ( A  u.  ran  ( x  e.  w  |->  ( A  +o  x ) ) ) )
1410, 13eqeq12d 2489 . . 3  |-  ( z  =  w  ->  (
( A  +o  z
)  =  ( A  u.  ran  ( x  e.  z  |->  ( A  +o  x ) ) )  <->  ( A  +o  w )  =  ( A  u.  ran  (
x  e.  w  |->  ( A  +o  x ) ) ) ) )
15 oveq2 6303 . . . 4  |-  ( z  =  suc  w  -> 
( A  +o  z
)  =  ( A  +o  suc  w ) )
16 mpteq1 4533 . . . . . 6  |-  ( z  =  suc  w  -> 
( x  e.  z 
|->  ( A  +o  x
) )  =  ( x  e.  suc  w  |->  ( A  +o  x
) ) )
1716rneqd 5236 . . . . 5  |-  ( z  =  suc  w  ->  ran  ( x  e.  z 
|->  ( A  +o  x
) )  =  ran  ( x  e.  suc  w  |->  ( A  +o  x ) ) )
1817uneq2d 3663 . . . 4  |-  ( z  =  suc  w  -> 
( A  u.  ran  ( x  e.  z  |->  ( A  +o  x
) ) )  =  ( A  u.  ran  ( x  e.  suc  w  |->  ( A  +o  x ) ) ) )
1915, 18eqeq12d 2489 . . 3  |-  ( z  =  suc  w  -> 
( ( A  +o  z )  =  ( A  u.  ran  (
x  e.  z  |->  ( A  +o  x ) ) )  <->  ( A  +o  suc  w )  =  ( A  u.  ran  ( x  e.  suc  w  |->  ( A  +o  x ) ) ) ) )
20 oveq2 6303 . . . 4  |-  ( z  =  B  ->  ( A  +o  z )  =  ( A  +o  B
) )
21 mpteq1 4533 . . . . . 6  |-  ( z  =  B  ->  (
x  e.  z  |->  ( A  +o  x ) )  =  ( x  e.  B  |->  ( A  +o  x ) ) )
2221rneqd 5236 . . . . 5  |-  ( z  =  B  ->  ran  ( x  e.  z  |->  ( A  +o  x
) )  =  ran  ( x  e.  B  |->  ( A  +o  x
) ) )
2322uneq2d 3663 . . . 4  |-  ( z  =  B  ->  ( A  u.  ran  ( x  e.  z  |->  ( A  +o  x ) ) )  =  ( A  u.  ran  ( x  e.  B  |->  ( A  +o  x ) ) ) )
2420, 23eqeq12d 2489 . . 3  |-  ( z  =  B  ->  (
( A  +o  z
)  =  ( A  u.  ran  ( x  e.  z  |->  ( A  +o  x ) ) )  <->  ( A  +o  B )  =  ( A  u.  ran  (
x  e.  B  |->  ( A  +o  x ) ) ) ) )
25 oa0 7178 . . . 4  |-  ( A  e.  On  ->  ( A  +o  (/) )  =  A )
26 un0 3815 . . . 4  |-  ( A  u.  (/) )  =  A
2725, 26syl6eqr 2526 . . 3  |-  ( A  e.  On  ->  ( A  +o  (/) )  =  ( A  u.  (/) ) )
28 uneq1 3656 . . . . . 6  |-  ( ( A  +o  w )  =  ( A  u.  ran  ( x  e.  w  |->  ( A  +o  x
) ) )  -> 
( ( A  +o  w )  u.  {
( A  +o  w
) } )  =  ( ( A  u.  ran  ( x  e.  w  |->  ( A  +o  x
) ) )  u. 
{ ( A  +o  w ) } ) )
29 unass 3666 . . . . . . 7  |-  ( ( A  u.  ran  (
x  e.  w  |->  ( A  +o  x ) ) )  u.  {
( A  +o  w
) } )  =  ( A  u.  ( ran  ( x  e.  w  |->  ( A  +o  x
) )  u.  {
( A  +o  w
) } ) )
30 rexun 3689 . . . . . . . . . . 11  |-  ( E. x  e.  ( w  u.  { w }
) y  =  ( A  +o  x )  <-> 
( E. x  e.  w  y  =  ( A  +o  x )  \/  E. x  e. 
{ w } y  =  ( A  +o  x ) ) )
31 df-suc 4890 . . . . . . . . . . . 12  |-  suc  w  =  ( w  u. 
{ w } )
3231rexeqi 3068 . . . . . . . . . . 11  |-  ( E. x  e.  suc  w
y  =  ( A  +o  x )  <->  E. x  e.  ( w  u.  {
w } ) y  =  ( A  +o  x ) )
33 vex 3121 . . . . . . . . . . . . 13  |-  y  e. 
_V
34 eqid 2467 . . . . . . . . . . . . . 14  |-  ( x  e.  w  |->  ( A  +o  x ) )  =  ( x  e.  w  |->  ( A  +o  x ) )
3534elrnmpt 5255 . . . . . . . . . . . . 13  |-  ( y  e.  _V  ->  (
y  e.  ran  (
x  e.  w  |->  ( A  +o  x ) )  <->  E. x  e.  w  y  =  ( A  +o  x ) ) )
3633, 35ax-mp 5 . . . . . . . . . . . 12  |-  ( y  e.  ran  ( x  e.  w  |->  ( A  +o  x ) )  <->  E. x  e.  w  y  =  ( A  +o  x ) )
37 elsn 4047 . . . . . . . . . . . . 13  |-  ( y  e.  { ( A  +o  w ) }  <-> 
y  =  ( A  +o  w ) )
38 vex 3121 . . . . . . . . . . . . . 14  |-  w  e. 
_V
39 oveq2 6303 . . . . . . . . . . . . . . 15  |-  ( x  =  w  ->  ( A  +o  x )  =  ( A  +o  w
) )
4039eqeq2d 2481 . . . . . . . . . . . . . 14  |-  ( x  =  w  ->  (
y  =  ( A  +o  x )  <->  y  =  ( A  +o  w
) ) )
4138, 40rexsn 4073 . . . . . . . . . . . . 13  |-  ( E. x  e.  { w } y  =  ( A  +o  x )  <-> 
y  =  ( A  +o  w ) )
4237, 41bitr4i 252 . . . . . . . . . . . 12  |-  ( y  e.  { ( A  +o  w ) }  <->  E. x  e.  { w } y  =  ( A  +o  x ) )
4336, 42orbi12i 521 . . . . . . . . . . 11  |-  ( ( y  e.  ran  (
x  e.  w  |->  ( A  +o  x ) )  \/  y  e. 
{ ( A  +o  w ) } )  <-> 
( E. x  e.  w  y  =  ( A  +o  x )  \/  E. x  e. 
{ w } y  =  ( A  +o  x ) ) )
4430, 32, 433bitr4i 277 . . . . . . . . . 10  |-  ( E. x  e.  suc  w
y  =  ( A  +o  x )  <->  ( y  e.  ran  ( x  e.  w  |->  ( A  +o  x ) )  \/  y  e.  { ( A  +o  w ) } ) )
45 eqid 2467 . . . . . . . . . . 11  |-  ( x  e.  suc  w  |->  ( A  +o  x ) )  =  ( x  e.  suc  w  |->  ( A  +o  x ) )
46 ovex 6320 . . . . . . . . . . 11  |-  ( A  +o  x )  e. 
_V
4745, 46elrnmpti 5259 . . . . . . . . . 10  |-  ( y  e.  ran  ( x  e.  suc  w  |->  ( A  +o  x ) )  <->  E. x  e.  suc  w y  =  ( A  +o  x ) )
48 elun 3650 . . . . . . . . . 10  |-  ( y  e.  ( ran  (
x  e.  w  |->  ( A  +o  x ) )  u.  { ( A  +o  w ) } )  <->  ( y  e.  ran  ( x  e.  w  |->  ( A  +o  x ) )  \/  y  e.  { ( A  +o  w ) } ) )
4944, 47, 483bitr4i 277 . . . . . . . . 9  |-  ( y  e.  ran  ( x  e.  suc  w  |->  ( A  +o  x ) )  <->  y  e.  ( ran  ( x  e.  w  |->  ( A  +o  x ) )  u. 
{ ( A  +o  w ) } ) )
5049eqriv 2463 . . . . . . . 8  |-  ran  (
x  e.  suc  w  |->  ( A  +o  x
) )  =  ( ran  ( x  e.  w  |->  ( A  +o  x ) )  u. 
{ ( A  +o  w ) } )
5150uneq2i 3660 . . . . . . 7  |-  ( A  u.  ran  ( x  e.  suc  w  |->  ( A  +o  x ) ) )  =  ( A  u.  ( ran  ( x  e.  w  |->  ( A  +o  x
) )  u.  {
( A  +o  w
) } ) )
5229, 51eqtr4i 2499 . . . . . 6  |-  ( ( A  u.  ran  (
x  e.  w  |->  ( A  +o  x ) ) )  u.  {
( A  +o  w
) } )  =  ( A  u.  ran  ( x  e.  suc  w  |->  ( A  +o  x ) ) )
5328, 52syl6eq 2524 . . . . 5  |-  ( ( A  +o  w )  =  ( A  u.  ran  ( x  e.  w  |->  ( A  +o  x
) ) )  -> 
( ( A  +o  w )  u.  {
( A  +o  w
) } )  =  ( A  u.  ran  ( x  e.  suc  w  |->  ( A  +o  x ) ) ) )
54 oasuc 7186 . . . . . . 7  |-  ( ( A  e.  On  /\  w  e.  On )  ->  ( A  +o  suc  w )  =  suc  ( A  +o  w
) )
55 df-suc 4890 . . . . . . 7  |-  suc  ( A  +o  w )  =  ( ( A  +o  w )  u.  {
( A  +o  w
) } )
5654, 55syl6eq 2524 . . . . . 6  |-  ( ( A  e.  On  /\  w  e.  On )  ->  ( A  +o  suc  w )  =  ( ( A  +o  w
)  u.  { ( A  +o  w ) } ) )
5756eqeq1d 2469 . . . . 5  |-  ( ( A  e.  On  /\  w  e.  On )  ->  ( ( A  +o  suc  w )  =  ( A  u.  ran  (
x  e.  suc  w  |->  ( A  +o  x
) ) )  <->  ( ( A  +o  w )  u. 
{ ( A  +o  w ) } )  =  ( A  u.  ran  ( x  e.  suc  w  |->  ( A  +o  x ) ) ) ) )
5853, 57syl5ibr 221 . . . 4  |-  ( ( A  e.  On  /\  w  e.  On )  ->  ( ( A  +o  w )  =  ( A  u.  ran  (
x  e.  w  |->  ( A  +o  x ) ) )  ->  ( A  +o  suc  w )  =  ( A  u.  ran  ( x  e.  suc  w  |->  ( A  +o  x ) ) ) ) )
5958expcom 435 . . 3  |-  ( w  e.  On  ->  ( A  e.  On  ->  ( ( A  +o  w
)  =  ( A  u.  ran  ( x  e.  w  |->  ( A  +o  x ) ) )  ->  ( A  +o  suc  w )  =  ( A  u.  ran  ( x  e.  suc  w  |->  ( A  +o  x ) ) ) ) ) )
60 vex 3121 . . . . . . . 8  |-  z  e. 
_V
61 oalim 7194 . . . . . . . 8  |-  ( ( A  e.  On  /\  ( z  e.  _V  /\ 
Lim  z ) )  ->  ( A  +o  z )  =  U_ w  e.  z  ( A  +o  w ) )
6260, 61mpanr1 683 . . . . . . 7  |-  ( ( A  e.  On  /\  Lim  z )  ->  ( A  +o  z )  = 
U_ w  e.  z  ( A  +o  w
) )
6362ancoms 453 . . . . . 6  |-  ( ( Lim  z  /\  A  e.  On )  ->  ( A  +o  z )  = 
U_ w  e.  z  ( A  +o  w
) )
6463adantr 465 . . . . 5  |-  ( ( ( Lim  z  /\  A  e.  On )  /\  A. w  e.  z  ( A  +o  w
)  =  ( A  u.  ran  ( x  e.  w  |->  ( A  +o  x ) ) ) )  ->  ( A  +o  z )  = 
U_ w  e.  z  ( A  +o  w
) )
65 iuneq2 4348 . . . . . 6  |-  ( A. w  e.  z  ( A  +o  w )  =  ( A  u.  ran  ( x  e.  w  |->  ( A  +o  x
) ) )  ->  U_ w  e.  z 
( A  +o  w
)  =  U_ w  e.  z  ( A  u.  ran  ( x  e.  w  |->  ( A  +o  x ) ) ) )
6665adantl 466 . . . . 5  |-  ( ( ( Lim  z  /\  A  e.  On )  /\  A. w  e.  z  ( A  +o  w
)  =  ( A  u.  ran  ( x  e.  w  |->  ( A  +o  x ) ) ) )  ->  U_ w  e.  z  ( A  +o  w )  =  U_ w  e.  z  ( A  u.  ran  ( x  e.  w  |->  ( A  +o  x ) ) ) )
67 iunun 4412 . . . . . . 7  |-  U_ w  e.  z  ( A  u.  ran  ( x  e.  w  |->  ( A  +o  x ) ) )  =  ( U_ w  e.  z  A  u.  U_ w  e.  z  ran  ( x  e.  w  |->  ( A  +o  x
) ) )
68 0ellim 4946 . . . . . . . . 9  |-  ( Lim  z  ->  (/)  e.  z )
69 ne0i 3796 . . . . . . . . 9  |-  ( (/)  e.  z  ->  z  =/=  (/) )
70 iunconst 4340 . . . . . . . . 9  |-  ( z  =/=  (/)  ->  U_ w  e.  z  A  =  A )
7168, 69, 703syl 20 . . . . . . . 8  |-  ( Lim  z  ->  U_ w  e.  z  A  =  A )
72 limuni 4944 . . . . . . . . . . . 12  |-  ( Lim  z  ->  z  =  U. z )
7372rexeqdv 3070 . . . . . . . . . . 11  |-  ( Lim  z  ->  ( E. x  e.  z  y  =  ( A  +o  x )  <->  E. x  e.  U. z y  =  ( A  +o  x
) ) )
74 df-rex 2823 . . . . . . . . . . . . . 14  |-  ( E. x  e.  w  y  =  ( A  +o  x )  <->  E. x
( x  e.  w  /\  y  =  ( A  +o  x ) ) )
7536, 74bitri 249 . . . . . . . . . . . . 13  |-  ( y  e.  ran  ( x  e.  w  |->  ( A  +o  x ) )  <->  E. x ( x  e.  w  /\  y  =  ( A  +o  x
) ) )
7675rexbii 2969 . . . . . . . . . . . 12  |-  ( E. w  e.  z  y  e.  ran  ( x  e.  w  |->  ( A  +o  x ) )  <->  E. w  e.  z  E. x ( x  e.  w  /\  y  =  ( A  +o  x
) ) )
77 eluni2 4255 . . . . . . . . . . . . . . . 16  |-  ( x  e.  U. z  <->  E. w  e.  z  x  e.  w )
7877anbi1i 695 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  U. z  /\  y  =  ( A  +o  x ) )  <-> 
( E. w  e.  z  x  e.  w  /\  y  =  ( A  +o  x ) ) )
79 r19.41v 3019 . . . . . . . . . . . . . . 15  |-  ( E. w  e.  z  ( x  e.  w  /\  y  =  ( A  +o  x ) )  <->  ( E. w  e.  z  x  e.  w  /\  y  =  ( A  +o  x ) ) )
8078, 79bitr4i 252 . . . . . . . . . . . . . 14  |-  ( ( x  e.  U. z  /\  y  =  ( A  +o  x ) )  <->  E. w  e.  z 
( x  e.  w  /\  y  =  ( A  +o  x ) ) )
8180exbii 1644 . . . . . . . . . . . . 13  |-  ( E. x ( x  e. 
U. z  /\  y  =  ( A  +o  x ) )  <->  E. x E. w  e.  z 
( x  e.  w  /\  y  =  ( A  +o  x ) ) )
82 df-rex 2823 . . . . . . . . . . . . 13  |-  ( E. x  e.  U. z
y  =  ( A  +o  x )  <->  E. x
( x  e.  U. z  /\  y  =  ( A  +o  x ) ) )
83 rexcom4 3138 . . . . . . . . . . . . 13  |-  ( E. w  e.  z  E. x ( x  e.  w  /\  y  =  ( A  +o  x
) )  <->  E. x E. w  e.  z 
( x  e.  w  /\  y  =  ( A  +o  x ) ) )
8481, 82, 833bitr4i 277 . . . . . . . . . . . 12  |-  ( E. x  e.  U. z
y  =  ( A  +o  x )  <->  E. w  e.  z  E. x
( x  e.  w  /\  y  =  ( A  +o  x ) ) )
8576, 84bitr4i 252 . . . . . . . . . . 11  |-  ( E. w  e.  z  y  e.  ran  ( x  e.  w  |->  ( A  +o  x ) )  <->  E. x  e.  U. z
y  =  ( A  +o  x ) )
8673, 85syl6rbbr 264 . . . . . . . . . 10  |-  ( Lim  z  ->  ( E. w  e.  z  y  e.  ran  ( x  e.  w  |->  ( A  +o  x ) )  <->  E. x  e.  z  y  =  ( A  +o  x
) ) )
87 eliun 4336 . . . . . . . . . 10  |-  ( y  e.  U_ w  e.  z  ran  ( x  e.  w  |->  ( A  +o  x ) )  <->  E. w  e.  z 
y  e.  ran  (
x  e.  w  |->  ( A  +o  x ) ) )
88 eqid 2467 . . . . . . . . . . 11  |-  ( x  e.  z  |->  ( A  +o  x ) )  =  ( x  e.  z  |->  ( A  +o  x ) )
8988, 46elrnmpti 5259 . . . . . . . . . 10  |-  ( y  e.  ran  ( x  e.  z  |->  ( A  +o  x ) )  <->  E. x  e.  z 
y  =  ( A  +o  x ) )
9086, 87, 893bitr4g 288 . . . . . . . . 9  |-  ( Lim  z  ->  ( y  e.  U_ w  e.  z  ran  ( x  e.  w  |->  ( A  +o  x ) )  <->  y  e.  ran  ( x  e.  z 
|->  ( A  +o  x
) ) ) )
9190eqrdv 2464 . . . . . . . 8  |-  ( Lim  z  ->  U_ w  e.  z  ran  ( x  e.  w  |->  ( A  +o  x ) )  =  ran  ( x  e.  z  |->  ( A  +o  x ) ) )
9271, 91uneq12d 3664 . . . . . . 7  |-  ( Lim  z  ->  ( U_ w  e.  z  A  u.  U_ w  e.  z  ran  ( x  e.  w  |->  ( A  +o  x ) ) )  =  ( A  u.  ran  ( x  e.  z 
|->  ( A  +o  x
) ) ) )
9367, 92syl5eq 2520 . . . . . 6  |-  ( Lim  z  ->  U_ w  e.  z  ( A  u.  ran  ( x  e.  w  |->  ( A  +o  x
) ) )  =  ( A  u.  ran  ( x  e.  z  |->  ( A  +o  x
) ) ) )
9493ad2antrr 725 . . . . 5  |-  ( ( ( Lim  z  /\  A  e.  On )  /\  A. w  e.  z  ( A  +o  w
)  =  ( A  u.  ran  ( x  e.  w  |->  ( A  +o  x ) ) ) )  ->  U_ w  e.  z  ( A  u.  ran  ( x  e.  w  |->  ( A  +o  x ) ) )  =  ( A  u.  ran  ( x  e.  z 
|->  ( A  +o  x
) ) ) )
9564, 66, 943eqtrd 2512 . . . 4  |-  ( ( ( Lim  z  /\  A  e.  On )  /\  A. w  e.  z  ( A  +o  w
)  =  ( A  u.  ran  ( x  e.  w  |->  ( A  +o  x ) ) ) )  ->  ( A  +o  z )  =  ( A  u.  ran  ( x  e.  z  |->  ( A  +o  x
) ) ) )
9695exp31 604 . . 3  |-  ( Lim  z  ->  ( A  e.  On  ->  ( A. w  e.  z  ( A  +o  w )  =  ( A  u.  ran  ( x  e.  w  |->  ( A  +o  x
) ) )  -> 
( A  +o  z
)  =  ( A  u.  ran  ( x  e.  z  |->  ( A  +o  x ) ) ) ) ) )
979, 14, 19, 24, 27, 59, 96tfinds3 6694 . 2  |-  ( B  e.  On  ->  ( A  e.  On  ->  ( A  +o  B )  =  ( A  u.  ran  ( x  e.  B  |->  ( A  +o  x
) ) ) ) )
9897impcom 430 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  B
)  =  ( A  u.  ran  ( x  e.  B  |->  ( A  +o  x ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1379   E.wex 1596    e. wcel 1767    =/= wne 2662   A.wral 2817   E.wrex 2818   _Vcvv 3118    u. cun 3479   (/)c0 3790   {csn 4033   U.cuni 4251   U_ciun 4331    |-> cmpt 4511   Oncon0 4884   Lim wlim 4885   suc csuc 4886   ran crn 5006  (class class class)co 6295    +o coa 7139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-recs 7054  df-rdg 7088  df-oadd 7146
This theorem is referenced by:  oacomf1o  7226  onacda  8589
  Copyright terms: Public domain W3C validator