MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oaordi Structured version   Visualization version   Unicode version

Theorem oaordi 7265
Description: Ordering property of ordinal addition. Proposition 8.4 of [TakeutiZaring] p. 58. (Contributed by NM, 5-Dec-2004.)
Assertion
Ref Expression
oaordi  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  ->  ( C  +o  A
)  e.  ( C  +o  B ) ) )

Proof of Theorem oaordi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onelon 5455 . . . . 5  |-  ( ( B  e.  On  /\  A  e.  B )  ->  A  e.  On )
21adantll 728 . . . 4  |-  ( ( ( C  e.  On  /\  B  e.  On )  /\  A  e.  B
)  ->  A  e.  On )
3 eloni 5440 . . . . . . . . 9  |-  ( B  e.  On  ->  Ord  B )
4 ordsucss 6664 . . . . . . . . 9  |-  ( Ord 
B  ->  ( A  e.  B  ->  suc  A  C_  B ) )
53, 4syl 17 . . . . . . . 8  |-  ( B  e.  On  ->  ( A  e.  B  ->  suc 
A  C_  B )
)
65ad2antlr 741 . . . . . . 7  |-  ( ( ( C  e.  On  /\  B  e.  On )  /\  A  e.  On )  ->  ( A  e.  B  ->  suc  A  C_  B ) )
7 sucelon 6663 . . . . . . . . . 10  |-  ( A  e.  On  <->  suc  A  e.  On )
8 oveq2 6316 . . . . . . . . . . . . . 14  |-  ( x  =  suc  A  -> 
( C  +o  x
)  =  ( C  +o  suc  A ) )
98sseq2d 3446 . . . . . . . . . . . . 13  |-  ( x  =  suc  A  -> 
( ( C  +o  suc  A )  C_  ( C  +o  x )  <->  ( C  +o  suc  A )  C_  ( C  +o  suc  A
) ) )
109imbi2d 323 . . . . . . . . . . . 12  |-  ( x  =  suc  A  -> 
( ( C  e.  On  ->  ( C  +o  suc  A )  C_  ( C  +o  x
) )  <->  ( C  e.  On  ->  ( C  +o  suc  A )  C_  ( C  +o  suc  A
) ) ) )
11 oveq2 6316 . . . . . . . . . . . . . 14  |-  ( x  =  y  ->  ( C  +o  x )  =  ( C  +o  y
) )
1211sseq2d 3446 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  (
( C  +o  suc  A )  C_  ( C  +o  x )  <->  ( C  +o  suc  A )  C_  ( C  +o  y
) ) )
1312imbi2d 323 . . . . . . . . . . . 12  |-  ( x  =  y  ->  (
( C  e.  On  ->  ( C  +o  suc  A )  C_  ( C  +o  x ) )  <->  ( C  e.  On  ->  ( C  +o  suc  A )  C_  ( C  +o  y
) ) ) )
14 oveq2 6316 . . . . . . . . . . . . . 14  |-  ( x  =  suc  y  -> 
( C  +o  x
)  =  ( C  +o  suc  y ) )
1514sseq2d 3446 . . . . . . . . . . . . 13  |-  ( x  =  suc  y  -> 
( ( C  +o  suc  A )  C_  ( C  +o  x )  <->  ( C  +o  suc  A )  C_  ( C  +o  suc  y
) ) )
1615imbi2d 323 . . . . . . . . . . . 12  |-  ( x  =  suc  y  -> 
( ( C  e.  On  ->  ( C  +o  suc  A )  C_  ( C  +o  x
) )  <->  ( C  e.  On  ->  ( C  +o  suc  A )  C_  ( C  +o  suc  y
) ) ) )
17 oveq2 6316 . . . . . . . . . . . . . 14  |-  ( x  =  B  ->  ( C  +o  x )  =  ( C  +o  B
) )
1817sseq2d 3446 . . . . . . . . . . . . 13  |-  ( x  =  B  ->  (
( C  +o  suc  A )  C_  ( C  +o  x )  <->  ( C  +o  suc  A )  C_  ( C  +o  B
) ) )
1918imbi2d 323 . . . . . . . . . . . 12  |-  ( x  =  B  ->  (
( C  e.  On  ->  ( C  +o  suc  A )  C_  ( C  +o  x ) )  <->  ( C  e.  On  ->  ( C  +o  suc  A )  C_  ( C  +o  B
) ) ) )
20 ssid 3437 . . . . . . . . . . . . 13  |-  ( C  +o  suc  A ) 
C_  ( C  +o  suc  A )
21202a1i 12 . . . . . . . . . . . 12  |-  ( suc 
A  e.  On  ->  ( C  e.  On  ->  ( C  +o  suc  A
)  C_  ( C  +o  suc  A ) ) )
22 sssucid 5507 . . . . . . . . . . . . . . . . 17  |-  ( C  +o  y )  C_  suc  ( C  +o  y
)
23 sstr2 3425 . . . . . . . . . . . . . . . . 17  |-  ( ( C  +o  suc  A
)  C_  ( C  +o  y )  ->  (
( C  +o  y
)  C_  suc  ( C  +o  y )  -> 
( C  +o  suc  A )  C_  suc  ( C  +o  y ) ) )
2422, 23mpi 20 . . . . . . . . . . . . . . . 16  |-  ( ( C  +o  suc  A
)  C_  ( C  +o  y )  ->  ( C  +o  suc  A ) 
C_  suc  ( C  +o  y ) )
25 oasuc 7244 . . . . . . . . . . . . . . . . . 18  |-  ( ( C  e.  On  /\  y  e.  On )  ->  ( C  +o  suc  y )  =  suc  ( C  +o  y
) )
2625ancoms 460 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  On  /\  C  e.  On )  ->  ( C  +o  suc  y )  =  suc  ( C  +o  y
) )
2726sseq2d 3446 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  On  /\  C  e.  On )  ->  ( ( C  +o  suc  A )  C_  ( C  +o  suc  y )  <-> 
( C  +o  suc  A )  C_  suc  ( C  +o  y ) ) )
2824, 27syl5ibr 229 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  On  /\  C  e.  On )  ->  ( ( C  +o  suc  A )  C_  ( C  +o  y )  -> 
( C  +o  suc  A )  C_  ( C  +o  suc  y ) ) )
2928ex 441 . . . . . . . . . . . . . 14  |-  ( y  e.  On  ->  ( C  e.  On  ->  ( ( C  +o  suc  A )  C_  ( C  +o  y )  ->  ( C  +o  suc  A ) 
C_  ( C  +o  suc  y ) ) ) )
3029ad2antrr 740 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  On  /\ 
suc  A  e.  On )  /\  suc  A  C_  y )  ->  ( C  e.  On  ->  ( ( C  +o  suc  A )  C_  ( C  +o  y )  ->  ( C  +o  suc  A ) 
C_  ( C  +o  suc  y ) ) ) )
3130a2d 28 . . . . . . . . . . . 12  |-  ( ( ( y  e.  On  /\ 
suc  A  e.  On )  /\  suc  A  C_  y )  ->  (
( C  e.  On  ->  ( C  +o  suc  A )  C_  ( C  +o  y ) )  -> 
( C  e.  On  ->  ( C  +o  suc  A )  C_  ( C  +o  suc  y ) ) ) )
32 sucssel 5522 . . . . . . . . . . . . . . . . . . . 20  |-  ( A  e.  On  ->  ( suc  A  C_  x  ->  A  e.  x ) )
337, 32sylbir 218 . . . . . . . . . . . . . . . . . . 19  |-  ( suc 
A  e.  On  ->  ( suc  A  C_  x  ->  A  e.  x ) )
34 limsuc 6695 . . . . . . . . . . . . . . . . . . . 20  |-  ( Lim  x  ->  ( A  e.  x  <->  suc  A  e.  x
) )
3534biimpd 212 . . . . . . . . . . . . . . . . . . 19  |-  ( Lim  x  ->  ( A  e.  x  ->  suc  A  e.  x ) )
3633, 35sylan9r 670 . . . . . . . . . . . . . . . . . 18  |-  ( ( Lim  x  /\  suc  A  e.  On )  -> 
( suc  A  C_  x  ->  suc  A  e.  x
) )
3736imp 436 . . . . . . . . . . . . . . . . 17  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  suc  A  C_  x )  ->  suc  A  e.  x )
38 oveq2 6316 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  suc  A  -> 
( C  +o  y
)  =  ( C  +o  suc  A ) )
3938ssiun2s 4313 . . . . . . . . . . . . . . . . 17  |-  ( suc 
A  e.  x  -> 
( C  +o  suc  A )  C_  U_ y  e.  x  ( C  +o  y ) )
4037, 39syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  suc  A  C_  x )  ->  ( C  +o  suc  A ) 
C_  U_ y  e.  x  ( C  +o  y
) )
4140adantr 472 . . . . . . . . . . . . . . 15  |-  ( ( ( ( Lim  x  /\  suc  A  e.  On )  /\  suc  A  C_  x )  /\  C  e.  On )  ->  ( C  +o  suc  A ) 
C_  U_ y  e.  x  ( C  +o  y
) )
42 vex 3034 . . . . . . . . . . . . . . . . . . 19  |-  x  e. 
_V
43 oalim 7252 . . . . . . . . . . . . . . . . . . 19  |-  ( ( C  e.  On  /\  ( x  e.  _V  /\ 
Lim  x ) )  ->  ( C  +o  x )  =  U_ y  e.  x  ( C  +o  y ) )
4442, 43mpanr1 697 . . . . . . . . . . . . . . . . . 18  |-  ( ( C  e.  On  /\  Lim  x )  ->  ( C  +o  x )  = 
U_ y  e.  x  ( C  +o  y
) )
4544ancoms 460 . . . . . . . . . . . . . . . . 17  |-  ( ( Lim  x  /\  C  e.  On )  ->  ( C  +o  x )  = 
U_ y  e.  x  ( C  +o  y
) )
4645adantlr 729 . . . . . . . . . . . . . . . 16  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  C  e.  On )  ->  ( C  +o  x )  =  U_ y  e.  x  ( C  +o  y ) )
4746adantlr 729 . . . . . . . . . . . . . . 15  |-  ( ( ( ( Lim  x  /\  suc  A  e.  On )  /\  suc  A  C_  x )  /\  C  e.  On )  ->  ( C  +o  x )  = 
U_ y  e.  x  ( C  +o  y
) )
4841, 47sseqtr4d 3455 . . . . . . . . . . . . . 14  |-  ( ( ( ( Lim  x  /\  suc  A  e.  On )  /\  suc  A  C_  x )  /\  C  e.  On )  ->  ( C  +o  suc  A ) 
C_  ( C  +o  x ) )
4948ex 441 . . . . . . . . . . . . 13  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  suc  A  C_  x )  ->  ( C  e.  On  ->  ( C  +o  suc  A
)  C_  ( C  +o  x ) ) )
5049a1d 25 . . . . . . . . . . . 12  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  suc  A  C_  x )  ->  ( A. y  e.  x  ( suc  A  C_  y  ->  ( C  e.  On  ->  ( C  +o  suc  A )  C_  ( C  +o  y ) ) )  ->  ( C  e.  On  ->  ( C  +o  suc  A )  C_  ( C  +o  x
) ) ) )
5110, 13, 16, 19, 21, 31, 50tfindsg 6706 . . . . . . . . . . 11  |-  ( ( ( B  e.  On  /\ 
suc  A  e.  On )  /\  suc  A  C_  B )  ->  ( C  e.  On  ->  ( C  +o  suc  A
)  C_  ( C  +o  B ) ) )
5251exp31 615 . . . . . . . . . 10  |-  ( B  e.  On  ->  ( suc  A  e.  On  ->  ( suc  A  C_  B  ->  ( C  e.  On  ->  ( C  +o  suc  A )  C_  ( C  +o  B ) ) ) ) )
537, 52syl5bi 225 . . . . . . . . 9  |-  ( B  e.  On  ->  ( A  e.  On  ->  ( suc  A  C_  B  ->  ( C  e.  On  ->  ( C  +o  suc  A )  C_  ( C  +o  B ) ) ) ) )
5453com4r 88 . . . . . . . 8  |-  ( C  e.  On  ->  ( B  e.  On  ->  ( A  e.  On  ->  ( suc  A  C_  B  ->  ( C  +o  suc  A )  C_  ( C  +o  B ) ) ) ) )
5554imp31 439 . . . . . . 7  |-  ( ( ( C  e.  On  /\  B  e.  On )  /\  A  e.  On )  ->  ( suc  A  C_  B  ->  ( C  +o  suc  A )  C_  ( C  +o  B
) ) )
56 oasuc 7244 . . . . . . . . . 10  |-  ( ( C  e.  On  /\  A  e.  On )  ->  ( C  +o  suc  A )  =  suc  ( C  +o  A ) )
5756sseq1d 3445 . . . . . . . . 9  |-  ( ( C  e.  On  /\  A  e.  On )  ->  ( ( C  +o  suc  A )  C_  ( C  +o  B )  <->  suc  ( C  +o  A )  C_  ( C  +o  B
) ) )
58 ovex 6336 . . . . . . . . . 10  |-  ( C  +o  A )  e. 
_V
59 sucssel 5522 . . . . . . . . . 10  |-  ( ( C  +o  A )  e.  _V  ->  ( suc  ( C  +o  A
)  C_  ( C  +o  B )  ->  ( C  +o  A )  e.  ( C  +o  B
) ) )
6058, 59ax-mp 5 . . . . . . . . 9  |-  ( suc  ( C  +o  A
)  C_  ( C  +o  B )  ->  ( C  +o  A )  e.  ( C  +o  B
) )
6157, 60syl6bi 236 . . . . . . . 8  |-  ( ( C  e.  On  /\  A  e.  On )  ->  ( ( C  +o  suc  A )  C_  ( C  +o  B )  -> 
( C  +o  A
)  e.  ( C  +o  B ) ) )
6261adantlr 729 . . . . . . 7  |-  ( ( ( C  e.  On  /\  B  e.  On )  /\  A  e.  On )  ->  ( ( C  +o  suc  A ) 
C_  ( C  +o  B )  ->  ( C  +o  A )  e.  ( C  +o  B
) ) )
636, 55, 623syld 56 . . . . . 6  |-  ( ( ( C  e.  On  /\  B  e.  On )  /\  A  e.  On )  ->  ( A  e.  B  ->  ( C  +o  A )  e.  ( C  +o  B ) ) )
6463imp 436 . . . . 5  |-  ( ( ( ( C  e.  On  /\  B  e.  On )  /\  A  e.  On )  /\  A  e.  B )  ->  ( C  +o  A )  e.  ( C  +o  B
) )
6564an32s 821 . . . 4  |-  ( ( ( ( C  e.  On  /\  B  e.  On )  /\  A  e.  B )  /\  A  e.  On )  ->  ( C  +o  A )  e.  ( C  +o  B
) )
662, 65mpdan 681 . . 3  |-  ( ( ( C  e.  On  /\  B  e.  On )  /\  A  e.  B
)  ->  ( C  +o  A )  e.  ( C  +o  B ) )
6766ex 441 . 2  |-  ( ( C  e.  On  /\  B  e.  On )  ->  ( A  e.  B  ->  ( C  +o  A
)  e.  ( C  +o  B ) ) )
6867ancoms 460 1  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  ->  ( C  +o  A
)  e.  ( C  +o  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 376    = wceq 1452    e. wcel 1904   A.wral 2756   _Vcvv 3031    C_ wss 3390   U_ciun 4269   Ord word 5429   Oncon0 5430   Lim wlim 5431   suc csuc 5432  (class class class)co 6308    +o coa 7197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-oadd 7204
This theorem is referenced by:  oaord  7266  oaass  7280  odi  7298
  Copyright terms: Public domain W3C validator