MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oaordi Structured version   Visualization version   Unicode version

Theorem oaordi 7247
Description: Ordering property of ordinal addition. Proposition 8.4 of [TakeutiZaring] p. 58. (Contributed by NM, 5-Dec-2004.)
Assertion
Ref Expression
oaordi  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  ->  ( C  +o  A
)  e.  ( C  +o  B ) ) )

Proof of Theorem oaordi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onelon 5448 . . . . 5  |-  ( ( B  e.  On  /\  A  e.  B )  ->  A  e.  On )
21adantll 720 . . . 4  |-  ( ( ( C  e.  On  /\  B  e.  On )  /\  A  e.  B
)  ->  A  e.  On )
3 eloni 5433 . . . . . . . . 9  |-  ( B  e.  On  ->  Ord  B )
4 ordsucss 6645 . . . . . . . . 9  |-  ( Ord 
B  ->  ( A  e.  B  ->  suc  A  C_  B ) )
53, 4syl 17 . . . . . . . 8  |-  ( B  e.  On  ->  ( A  e.  B  ->  suc 
A  C_  B )
)
65ad2antlr 733 . . . . . . 7  |-  ( ( ( C  e.  On  /\  B  e.  On )  /\  A  e.  On )  ->  ( A  e.  B  ->  suc  A  C_  B ) )
7 sucelon 6644 . . . . . . . . . 10  |-  ( A  e.  On  <->  suc  A  e.  On )
8 oveq2 6298 . . . . . . . . . . . . . 14  |-  ( x  =  suc  A  -> 
( C  +o  x
)  =  ( C  +o  suc  A ) )
98sseq2d 3460 . . . . . . . . . . . . 13  |-  ( x  =  suc  A  -> 
( ( C  +o  suc  A )  C_  ( C  +o  x )  <->  ( C  +o  suc  A )  C_  ( C  +o  suc  A
) ) )
109imbi2d 318 . . . . . . . . . . . 12  |-  ( x  =  suc  A  -> 
( ( C  e.  On  ->  ( C  +o  suc  A )  C_  ( C  +o  x
) )  <->  ( C  e.  On  ->  ( C  +o  suc  A )  C_  ( C  +o  suc  A
) ) ) )
11 oveq2 6298 . . . . . . . . . . . . . 14  |-  ( x  =  y  ->  ( C  +o  x )  =  ( C  +o  y
) )
1211sseq2d 3460 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  (
( C  +o  suc  A )  C_  ( C  +o  x )  <->  ( C  +o  suc  A )  C_  ( C  +o  y
) ) )
1312imbi2d 318 . . . . . . . . . . . 12  |-  ( x  =  y  ->  (
( C  e.  On  ->  ( C  +o  suc  A )  C_  ( C  +o  x ) )  <->  ( C  e.  On  ->  ( C  +o  suc  A )  C_  ( C  +o  y
) ) ) )
14 oveq2 6298 . . . . . . . . . . . . . 14  |-  ( x  =  suc  y  -> 
( C  +o  x
)  =  ( C  +o  suc  y ) )
1514sseq2d 3460 . . . . . . . . . . . . 13  |-  ( x  =  suc  y  -> 
( ( C  +o  suc  A )  C_  ( C  +o  x )  <->  ( C  +o  suc  A )  C_  ( C  +o  suc  y
) ) )
1615imbi2d 318 . . . . . . . . . . . 12  |-  ( x  =  suc  y  -> 
( ( C  e.  On  ->  ( C  +o  suc  A )  C_  ( C  +o  x
) )  <->  ( C  e.  On  ->  ( C  +o  suc  A )  C_  ( C  +o  suc  y
) ) ) )
17 oveq2 6298 . . . . . . . . . . . . . 14  |-  ( x  =  B  ->  ( C  +o  x )  =  ( C  +o  B
) )
1817sseq2d 3460 . . . . . . . . . . . . 13  |-  ( x  =  B  ->  (
( C  +o  suc  A )  C_  ( C  +o  x )  <->  ( C  +o  suc  A )  C_  ( C  +o  B
) ) )
1918imbi2d 318 . . . . . . . . . . . 12  |-  ( x  =  B  ->  (
( C  e.  On  ->  ( C  +o  suc  A )  C_  ( C  +o  x ) )  <->  ( C  e.  On  ->  ( C  +o  suc  A )  C_  ( C  +o  B
) ) ) )
20 ssid 3451 . . . . . . . . . . . . 13  |-  ( C  +o  suc  A ) 
C_  ( C  +o  suc  A )
21202a1i 12 . . . . . . . . . . . 12  |-  ( suc 
A  e.  On  ->  ( C  e.  On  ->  ( C  +o  suc  A
)  C_  ( C  +o  suc  A ) ) )
22 sssucid 5500 . . . . . . . . . . . . . . . . 17  |-  ( C  +o  y )  C_  suc  ( C  +o  y
)
23 sstr2 3439 . . . . . . . . . . . . . . . . 17  |-  ( ( C  +o  suc  A
)  C_  ( C  +o  y )  ->  (
( C  +o  y
)  C_  suc  ( C  +o  y )  -> 
( C  +o  suc  A )  C_  suc  ( C  +o  y ) ) )
2422, 23mpi 20 . . . . . . . . . . . . . . . 16  |-  ( ( C  +o  suc  A
)  C_  ( C  +o  y )  ->  ( C  +o  suc  A ) 
C_  suc  ( C  +o  y ) )
25 oasuc 7226 . . . . . . . . . . . . . . . . . 18  |-  ( ( C  e.  On  /\  y  e.  On )  ->  ( C  +o  suc  y )  =  suc  ( C  +o  y
) )
2625ancoms 455 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  On  /\  C  e.  On )  ->  ( C  +o  suc  y )  =  suc  ( C  +o  y
) )
2726sseq2d 3460 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  On  /\  C  e.  On )  ->  ( ( C  +o  suc  A )  C_  ( C  +o  suc  y )  <-> 
( C  +o  suc  A )  C_  suc  ( C  +o  y ) ) )
2824, 27syl5ibr 225 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  On  /\  C  e.  On )  ->  ( ( C  +o  suc  A )  C_  ( C  +o  y )  -> 
( C  +o  suc  A )  C_  ( C  +o  suc  y ) ) )
2928ex 436 . . . . . . . . . . . . . 14  |-  ( y  e.  On  ->  ( C  e.  On  ->  ( ( C  +o  suc  A )  C_  ( C  +o  y )  ->  ( C  +o  suc  A ) 
C_  ( C  +o  suc  y ) ) ) )
3029ad2antrr 732 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  On  /\ 
suc  A  e.  On )  /\  suc  A  C_  y )  ->  ( C  e.  On  ->  ( ( C  +o  suc  A )  C_  ( C  +o  y )  ->  ( C  +o  suc  A ) 
C_  ( C  +o  suc  y ) ) ) )
3130a2d 29 . . . . . . . . . . . 12  |-  ( ( ( y  e.  On  /\ 
suc  A  e.  On )  /\  suc  A  C_  y )  ->  (
( C  e.  On  ->  ( C  +o  suc  A )  C_  ( C  +o  y ) )  -> 
( C  e.  On  ->  ( C  +o  suc  A )  C_  ( C  +o  suc  y ) ) ) )
32 sucssel 5515 . . . . . . . . . . . . . . . . . . . 20  |-  ( A  e.  On  ->  ( suc  A  C_  x  ->  A  e.  x ) )
337, 32sylbir 217 . . . . . . . . . . . . . . . . . . 19  |-  ( suc 
A  e.  On  ->  ( suc  A  C_  x  ->  A  e.  x ) )
34 limsuc 6676 . . . . . . . . . . . . . . . . . . . 20  |-  ( Lim  x  ->  ( A  e.  x  <->  suc  A  e.  x
) )
3534biimpd 211 . . . . . . . . . . . . . . . . . . 19  |-  ( Lim  x  ->  ( A  e.  x  ->  suc  A  e.  x ) )
3633, 35sylan9r 664 . . . . . . . . . . . . . . . . . 18  |-  ( ( Lim  x  /\  suc  A  e.  On )  -> 
( suc  A  C_  x  ->  suc  A  e.  x
) )
3736imp 431 . . . . . . . . . . . . . . . . 17  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  suc  A  C_  x )  ->  suc  A  e.  x )
38 oveq2 6298 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  suc  A  -> 
( C  +o  y
)  =  ( C  +o  suc  A ) )
3938ssiun2s 4322 . . . . . . . . . . . . . . . . 17  |-  ( suc 
A  e.  x  -> 
( C  +o  suc  A )  C_  U_ y  e.  x  ( C  +o  y ) )
4037, 39syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  suc  A  C_  x )  ->  ( C  +o  suc  A ) 
C_  U_ y  e.  x  ( C  +o  y
) )
4140adantr 467 . . . . . . . . . . . . . . 15  |-  ( ( ( ( Lim  x  /\  suc  A  e.  On )  /\  suc  A  C_  x )  /\  C  e.  On )  ->  ( C  +o  suc  A ) 
C_  U_ y  e.  x  ( C  +o  y
) )
42 vex 3048 . . . . . . . . . . . . . . . . . . 19  |-  x  e. 
_V
43 oalim 7234 . . . . . . . . . . . . . . . . . . 19  |-  ( ( C  e.  On  /\  ( x  e.  _V  /\ 
Lim  x ) )  ->  ( C  +o  x )  =  U_ y  e.  x  ( C  +o  y ) )
4442, 43mpanr1 689 . . . . . . . . . . . . . . . . . 18  |-  ( ( C  e.  On  /\  Lim  x )  ->  ( C  +o  x )  = 
U_ y  e.  x  ( C  +o  y
) )
4544ancoms 455 . . . . . . . . . . . . . . . . 17  |-  ( ( Lim  x  /\  C  e.  On )  ->  ( C  +o  x )  = 
U_ y  e.  x  ( C  +o  y
) )
4645adantlr 721 . . . . . . . . . . . . . . . 16  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  C  e.  On )  ->  ( C  +o  x )  =  U_ y  e.  x  ( C  +o  y ) )
4746adantlr 721 . . . . . . . . . . . . . . 15  |-  ( ( ( ( Lim  x  /\  suc  A  e.  On )  /\  suc  A  C_  x )  /\  C  e.  On )  ->  ( C  +o  x )  = 
U_ y  e.  x  ( C  +o  y
) )
4841, 47sseqtr4d 3469 . . . . . . . . . . . . . 14  |-  ( ( ( ( Lim  x  /\  suc  A  e.  On )  /\  suc  A  C_  x )  /\  C  e.  On )  ->  ( C  +o  suc  A ) 
C_  ( C  +o  x ) )
4948ex 436 . . . . . . . . . . . . 13  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  suc  A  C_  x )  ->  ( C  e.  On  ->  ( C  +o  suc  A
)  C_  ( C  +o  x ) ) )
5049a1d 26 . . . . . . . . . . . 12  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  suc  A  C_  x )  ->  ( A. y  e.  x  ( suc  A  C_  y  ->  ( C  e.  On  ->  ( C  +o  suc  A )  C_  ( C  +o  y ) ) )  ->  ( C  e.  On  ->  ( C  +o  suc  A )  C_  ( C  +o  x
) ) ) )
5110, 13, 16, 19, 21, 31, 50tfindsg 6687 . . . . . . . . . . 11  |-  ( ( ( B  e.  On  /\ 
suc  A  e.  On )  /\  suc  A  C_  B )  ->  ( C  e.  On  ->  ( C  +o  suc  A
)  C_  ( C  +o  B ) ) )
5251exp31 609 . . . . . . . . . 10  |-  ( B  e.  On  ->  ( suc  A  e.  On  ->  ( suc  A  C_  B  ->  ( C  e.  On  ->  ( C  +o  suc  A )  C_  ( C  +o  B ) ) ) ) )
537, 52syl5bi 221 . . . . . . . . 9  |-  ( B  e.  On  ->  ( A  e.  On  ->  ( suc  A  C_  B  ->  ( C  e.  On  ->  ( C  +o  suc  A )  C_  ( C  +o  B ) ) ) ) )
5453com4r 89 . . . . . . . 8  |-  ( C  e.  On  ->  ( B  e.  On  ->  ( A  e.  On  ->  ( suc  A  C_  B  ->  ( C  +o  suc  A )  C_  ( C  +o  B ) ) ) ) )
5554imp31 434 . . . . . . 7  |-  ( ( ( C  e.  On  /\  B  e.  On )  /\  A  e.  On )  ->  ( suc  A  C_  B  ->  ( C  +o  suc  A )  C_  ( C  +o  B
) ) )
56 oasuc 7226 . . . . . . . . . 10  |-  ( ( C  e.  On  /\  A  e.  On )  ->  ( C  +o  suc  A )  =  suc  ( C  +o  A ) )
5756sseq1d 3459 . . . . . . . . 9  |-  ( ( C  e.  On  /\  A  e.  On )  ->  ( ( C  +o  suc  A )  C_  ( C  +o  B )  <->  suc  ( C  +o  A )  C_  ( C  +o  B
) ) )
58 ovex 6318 . . . . . . . . . 10  |-  ( C  +o  A )  e. 
_V
59 sucssel 5515 . . . . . . . . . 10  |-  ( ( C  +o  A )  e.  _V  ->  ( suc  ( C  +o  A
)  C_  ( C  +o  B )  ->  ( C  +o  A )  e.  ( C  +o  B
) ) )
6058, 59ax-mp 5 . . . . . . . . 9  |-  ( suc  ( C  +o  A
)  C_  ( C  +o  B )  ->  ( C  +o  A )  e.  ( C  +o  B
) )
6157, 60syl6bi 232 . . . . . . . 8  |-  ( ( C  e.  On  /\  A  e.  On )  ->  ( ( C  +o  suc  A )  C_  ( C  +o  B )  -> 
( C  +o  A
)  e.  ( C  +o  B ) ) )
6261adantlr 721 . . . . . . 7  |-  ( ( ( C  e.  On  /\  B  e.  On )  /\  A  e.  On )  ->  ( ( C  +o  suc  A ) 
C_  ( C  +o  B )  ->  ( C  +o  A )  e.  ( C  +o  B
) ) )
636, 55, 623syld 57 . . . . . 6  |-  ( ( ( C  e.  On  /\  B  e.  On )  /\  A  e.  On )  ->  ( A  e.  B  ->  ( C  +o  A )  e.  ( C  +o  B ) ) )
6463imp 431 . . . . 5  |-  ( ( ( ( C  e.  On  /\  B  e.  On )  /\  A  e.  On )  /\  A  e.  B )  ->  ( C  +o  A )  e.  ( C  +o  B
) )
6564an32s 813 . . . 4  |-  ( ( ( ( C  e.  On  /\  B  e.  On )  /\  A  e.  B )  /\  A  e.  On )  ->  ( C  +o  A )  e.  ( C  +o  B
) )
662, 65mpdan 674 . . 3  |-  ( ( ( C  e.  On  /\  B  e.  On )  /\  A  e.  B
)  ->  ( C  +o  A )  e.  ( C  +o  B ) )
6766ex 436 . 2  |-  ( ( C  e.  On  /\  B  e.  On )  ->  ( A  e.  B  ->  ( C  +o  A
)  e.  ( C  +o  B ) ) )
6867ancoms 455 1  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  ->  ( C  +o  A
)  e.  ( C  +o  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371    = wceq 1444    e. wcel 1887   A.wral 2737   _Vcvv 3045    C_ wss 3404   U_ciun 4278   Ord word 5422   Oncon0 5423   Lim wlim 5424   suc csuc 5425  (class class class)co 6290    +o coa 7179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-ral 2742  df-rex 2743  df-reu 2744  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-iun 4280  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-oadd 7186
This theorem is referenced by:  oaord  7248  oaass  7262  odi  7280
  Copyright terms: Public domain W3C validator