MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oaordi Structured version   Unicode version

Theorem oaordi 7246
Description: Ordering property of ordinal addition. Proposition 8.4 of [TakeutiZaring] p. 58. (Contributed by NM, 5-Dec-2004.)
Assertion
Ref Expression
oaordi  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  ->  ( C  +o  A
)  e.  ( C  +o  B ) ) )

Proof of Theorem oaordi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onelon 5458 . . . . 5  |-  ( ( B  e.  On  /\  A  e.  B )  ->  A  e.  On )
21adantll 718 . . . 4  |-  ( ( ( C  e.  On  /\  B  e.  On )  /\  A  e.  B
)  ->  A  e.  On )
3 eloni 5443 . . . . . . . . 9  |-  ( B  e.  On  ->  Ord  B )
4 ordsucss 6650 . . . . . . . . 9  |-  ( Ord 
B  ->  ( A  e.  B  ->  suc  A  C_  B ) )
53, 4syl 17 . . . . . . . 8  |-  ( B  e.  On  ->  ( A  e.  B  ->  suc 
A  C_  B )
)
65ad2antlr 731 . . . . . . 7  |-  ( ( ( C  e.  On  /\  B  e.  On )  /\  A  e.  On )  ->  ( A  e.  B  ->  suc  A  C_  B ) )
7 sucelon 6649 . . . . . . . . . 10  |-  ( A  e.  On  <->  suc  A  e.  On )
8 oveq2 6304 . . . . . . . . . . . . . 14  |-  ( x  =  suc  A  -> 
( C  +o  x
)  =  ( C  +o  suc  A ) )
98sseq2d 3489 . . . . . . . . . . . . 13  |-  ( x  =  suc  A  -> 
( ( C  +o  suc  A )  C_  ( C  +o  x )  <->  ( C  +o  suc  A )  C_  ( C  +o  suc  A
) ) )
109imbi2d 317 . . . . . . . . . . . 12  |-  ( x  =  suc  A  -> 
( ( C  e.  On  ->  ( C  +o  suc  A )  C_  ( C  +o  x
) )  <->  ( C  e.  On  ->  ( C  +o  suc  A )  C_  ( C  +o  suc  A
) ) ) )
11 oveq2 6304 . . . . . . . . . . . . . 14  |-  ( x  =  y  ->  ( C  +o  x )  =  ( C  +o  y
) )
1211sseq2d 3489 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  (
( C  +o  suc  A )  C_  ( C  +o  x )  <->  ( C  +o  suc  A )  C_  ( C  +o  y
) ) )
1312imbi2d 317 . . . . . . . . . . . 12  |-  ( x  =  y  ->  (
( C  e.  On  ->  ( C  +o  suc  A )  C_  ( C  +o  x ) )  <->  ( C  e.  On  ->  ( C  +o  suc  A )  C_  ( C  +o  y
) ) ) )
14 oveq2 6304 . . . . . . . . . . . . . 14  |-  ( x  =  suc  y  -> 
( C  +o  x
)  =  ( C  +o  suc  y ) )
1514sseq2d 3489 . . . . . . . . . . . . 13  |-  ( x  =  suc  y  -> 
( ( C  +o  suc  A )  C_  ( C  +o  x )  <->  ( C  +o  suc  A )  C_  ( C  +o  suc  y
) ) )
1615imbi2d 317 . . . . . . . . . . . 12  |-  ( x  =  suc  y  -> 
( ( C  e.  On  ->  ( C  +o  suc  A )  C_  ( C  +o  x
) )  <->  ( C  e.  On  ->  ( C  +o  suc  A )  C_  ( C  +o  suc  y
) ) ) )
17 oveq2 6304 . . . . . . . . . . . . . 14  |-  ( x  =  B  ->  ( C  +o  x )  =  ( C  +o  B
) )
1817sseq2d 3489 . . . . . . . . . . . . 13  |-  ( x  =  B  ->  (
( C  +o  suc  A )  C_  ( C  +o  x )  <->  ( C  +o  suc  A )  C_  ( C  +o  B
) ) )
1918imbi2d 317 . . . . . . . . . . . 12  |-  ( x  =  B  ->  (
( C  e.  On  ->  ( C  +o  suc  A )  C_  ( C  +o  x ) )  <->  ( C  e.  On  ->  ( C  +o  suc  A )  C_  ( C  +o  B
) ) ) )
20 ssid 3480 . . . . . . . . . . . . 13  |-  ( C  +o  suc  A ) 
C_  ( C  +o  suc  A )
21202a1i 12 . . . . . . . . . . . 12  |-  ( suc 
A  e.  On  ->  ( C  e.  On  ->  ( C  +o  suc  A
)  C_  ( C  +o  suc  A ) ) )
22 sssucid 5510 . . . . . . . . . . . . . . . . 17  |-  ( C  +o  y )  C_  suc  ( C  +o  y
)
23 sstr2 3468 . . . . . . . . . . . . . . . . 17  |-  ( ( C  +o  suc  A
)  C_  ( C  +o  y )  ->  (
( C  +o  y
)  C_  suc  ( C  +o  y )  -> 
( C  +o  suc  A )  C_  suc  ( C  +o  y ) ) )
2422, 23mpi 21 . . . . . . . . . . . . . . . 16  |-  ( ( C  +o  suc  A
)  C_  ( C  +o  y )  ->  ( C  +o  suc  A ) 
C_  suc  ( C  +o  y ) )
25 oasuc 7225 . . . . . . . . . . . . . . . . . 18  |-  ( ( C  e.  On  /\  y  e.  On )  ->  ( C  +o  suc  y )  =  suc  ( C  +o  y
) )
2625ancoms 454 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  On  /\  C  e.  On )  ->  ( C  +o  suc  y )  =  suc  ( C  +o  y
) )
2726sseq2d 3489 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  On  /\  C  e.  On )  ->  ( ( C  +o  suc  A )  C_  ( C  +o  suc  y )  <-> 
( C  +o  suc  A )  C_  suc  ( C  +o  y ) ) )
2824, 27syl5ibr 224 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  On  /\  C  e.  On )  ->  ( ( C  +o  suc  A )  C_  ( C  +o  y )  -> 
( C  +o  suc  A )  C_  ( C  +o  suc  y ) ) )
2928ex 435 . . . . . . . . . . . . . 14  |-  ( y  e.  On  ->  ( C  e.  On  ->  ( ( C  +o  suc  A )  C_  ( C  +o  y )  ->  ( C  +o  suc  A ) 
C_  ( C  +o  suc  y ) ) ) )
3029ad2antrr 730 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  On  /\ 
suc  A  e.  On )  /\  suc  A  C_  y )  ->  ( C  e.  On  ->  ( ( C  +o  suc  A )  C_  ( C  +o  y )  ->  ( C  +o  suc  A ) 
C_  ( C  +o  suc  y ) ) ) )
3130a2d 29 . . . . . . . . . . . 12  |-  ( ( ( y  e.  On  /\ 
suc  A  e.  On )  /\  suc  A  C_  y )  ->  (
( C  e.  On  ->  ( C  +o  suc  A )  C_  ( C  +o  y ) )  -> 
( C  e.  On  ->  ( C  +o  suc  A )  C_  ( C  +o  suc  y ) ) ) )
32 sucssel 5525 . . . . . . . . . . . . . . . . . . . 20  |-  ( A  e.  On  ->  ( suc  A  C_  x  ->  A  e.  x ) )
337, 32sylbir 216 . . . . . . . . . . . . . . . . . . 19  |-  ( suc 
A  e.  On  ->  ( suc  A  C_  x  ->  A  e.  x ) )
34 limsuc 6681 . . . . . . . . . . . . . . . . . . . 20  |-  ( Lim  x  ->  ( A  e.  x  <->  suc  A  e.  x
) )
3534biimpd 210 . . . . . . . . . . . . . . . . . . 19  |-  ( Lim  x  ->  ( A  e.  x  ->  suc  A  e.  x ) )
3633, 35sylan9r 662 . . . . . . . . . . . . . . . . . 18  |-  ( ( Lim  x  /\  suc  A  e.  On )  -> 
( suc  A  C_  x  ->  suc  A  e.  x
) )
3736imp 430 . . . . . . . . . . . . . . . . 17  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  suc  A  C_  x )  ->  suc  A  e.  x )
38 oveq2 6304 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  suc  A  -> 
( C  +o  y
)  =  ( C  +o  suc  A ) )
3938ssiun2s 4337 . . . . . . . . . . . . . . . . 17  |-  ( suc 
A  e.  x  -> 
( C  +o  suc  A )  C_  U_ y  e.  x  ( C  +o  y ) )
4037, 39syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  suc  A  C_  x )  ->  ( C  +o  suc  A ) 
C_  U_ y  e.  x  ( C  +o  y
) )
4140adantr 466 . . . . . . . . . . . . . . 15  |-  ( ( ( ( Lim  x  /\  suc  A  e.  On )  /\  suc  A  C_  x )  /\  C  e.  On )  ->  ( C  +o  suc  A ) 
C_  U_ y  e.  x  ( C  +o  y
) )
42 vex 3081 . . . . . . . . . . . . . . . . . . 19  |-  x  e. 
_V
43 oalim 7233 . . . . . . . . . . . . . . . . . . 19  |-  ( ( C  e.  On  /\  ( x  e.  _V  /\ 
Lim  x ) )  ->  ( C  +o  x )  =  U_ y  e.  x  ( C  +o  y ) )
4442, 43mpanr1 687 . . . . . . . . . . . . . . . . . 18  |-  ( ( C  e.  On  /\  Lim  x )  ->  ( C  +o  x )  = 
U_ y  e.  x  ( C  +o  y
) )
4544ancoms 454 . . . . . . . . . . . . . . . . 17  |-  ( ( Lim  x  /\  C  e.  On )  ->  ( C  +o  x )  = 
U_ y  e.  x  ( C  +o  y
) )
4645adantlr 719 . . . . . . . . . . . . . . . 16  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  C  e.  On )  ->  ( C  +o  x )  =  U_ y  e.  x  ( C  +o  y ) )
4746adantlr 719 . . . . . . . . . . . . . . 15  |-  ( ( ( ( Lim  x  /\  suc  A  e.  On )  /\  suc  A  C_  x )  /\  C  e.  On )  ->  ( C  +o  x )  = 
U_ y  e.  x  ( C  +o  y
) )
4841, 47sseqtr4d 3498 . . . . . . . . . . . . . 14  |-  ( ( ( ( Lim  x  /\  suc  A  e.  On )  /\  suc  A  C_  x )  /\  C  e.  On )  ->  ( C  +o  suc  A ) 
C_  ( C  +o  x ) )
4948ex 435 . . . . . . . . . . . . 13  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  suc  A  C_  x )  ->  ( C  e.  On  ->  ( C  +o  suc  A
)  C_  ( C  +o  x ) ) )
5049a1d 26 . . . . . . . . . . . 12  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  suc  A  C_  x )  ->  ( A. y  e.  x  ( suc  A  C_  y  ->  ( C  e.  On  ->  ( C  +o  suc  A )  C_  ( C  +o  y ) ) )  ->  ( C  e.  On  ->  ( C  +o  suc  A )  C_  ( C  +o  x
) ) ) )
5110, 13, 16, 19, 21, 31, 50tfindsg 6692 . . . . . . . . . . 11  |-  ( ( ( B  e.  On  /\ 
suc  A  e.  On )  /\  suc  A  C_  B )  ->  ( C  e.  On  ->  ( C  +o  suc  A
)  C_  ( C  +o  B ) ) )
5251exp31 607 . . . . . . . . . 10  |-  ( B  e.  On  ->  ( suc  A  e.  On  ->  ( suc  A  C_  B  ->  ( C  e.  On  ->  ( C  +o  suc  A )  C_  ( C  +o  B ) ) ) ) )
537, 52syl5bi 220 . . . . . . . . 9  |-  ( B  e.  On  ->  ( A  e.  On  ->  ( suc  A  C_  B  ->  ( C  e.  On  ->  ( C  +o  suc  A )  C_  ( C  +o  B ) ) ) ) )
5453com4r 89 . . . . . . . 8  |-  ( C  e.  On  ->  ( B  e.  On  ->  ( A  e.  On  ->  ( suc  A  C_  B  ->  ( C  +o  suc  A )  C_  ( C  +o  B ) ) ) ) )
5554imp31 433 . . . . . . 7  |-  ( ( ( C  e.  On  /\  B  e.  On )  /\  A  e.  On )  ->  ( suc  A  C_  B  ->  ( C  +o  suc  A )  C_  ( C  +o  B
) ) )
56 oasuc 7225 . . . . . . . . . 10  |-  ( ( C  e.  On  /\  A  e.  On )  ->  ( C  +o  suc  A )  =  suc  ( C  +o  A ) )
5756sseq1d 3488 . . . . . . . . 9  |-  ( ( C  e.  On  /\  A  e.  On )  ->  ( ( C  +o  suc  A )  C_  ( C  +o  B )  <->  suc  ( C  +o  A )  C_  ( C  +o  B
) ) )
58 ovex 6324 . . . . . . . . . 10  |-  ( C  +o  A )  e. 
_V
59 sucssel 5525 . . . . . . . . . 10  |-  ( ( C  +o  A )  e.  _V  ->  ( suc  ( C  +o  A
)  C_  ( C  +o  B )  ->  ( C  +o  A )  e.  ( C  +o  B
) ) )
6058, 59ax-mp 5 . . . . . . . . 9  |-  ( suc  ( C  +o  A
)  C_  ( C  +o  B )  ->  ( C  +o  A )  e.  ( C  +o  B
) )
6157, 60syl6bi 231 . . . . . . . 8  |-  ( ( C  e.  On  /\  A  e.  On )  ->  ( ( C  +o  suc  A )  C_  ( C  +o  B )  -> 
( C  +o  A
)  e.  ( C  +o  B ) ) )
6261adantlr 719 . . . . . . 7  |-  ( ( ( C  e.  On  /\  B  e.  On )  /\  A  e.  On )  ->  ( ( C  +o  suc  A ) 
C_  ( C  +o  B )  ->  ( C  +o  A )  e.  ( C  +o  B
) ) )
636, 55, 623syld 57 . . . . . 6  |-  ( ( ( C  e.  On  /\  B  e.  On )  /\  A  e.  On )  ->  ( A  e.  B  ->  ( C  +o  A )  e.  ( C  +o  B ) ) )
6463imp 430 . . . . 5  |-  ( ( ( ( C  e.  On  /\  B  e.  On )  /\  A  e.  On )  /\  A  e.  B )  ->  ( C  +o  A )  e.  ( C  +o  B
) )
6564an32s 811 . . . 4  |-  ( ( ( ( C  e.  On  /\  B  e.  On )  /\  A  e.  B )  /\  A  e.  On )  ->  ( C  +o  A )  e.  ( C  +o  B
) )
662, 65mpdan 672 . . 3  |-  ( ( ( C  e.  On  /\  B  e.  On )  /\  A  e.  B
)  ->  ( C  +o  A )  e.  ( C  +o  B ) )
6766ex 435 . 2  |-  ( ( C  e.  On  /\  B  e.  On )  ->  ( A  e.  B  ->  ( C  +o  A
)  e.  ( C  +o  B ) ) )
6867ancoms 454 1  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  ->  ( C  +o  A
)  e.  ( C  +o  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    = wceq 1437    e. wcel 1867   A.wral 2773   _Vcvv 3078    C_ wss 3433   U_ciun 4293   Ord word 5432   Oncon0 5433   Lim wlim 5434   suc csuc 5435  (class class class)co 6296    +o coa 7178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-8 1869  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-rep 4529  ax-sep 4539  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6588
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2267  df-mo 2268  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-ral 2778  df-rex 2779  df-reu 2780  df-rab 2782  df-v 3080  df-sbc 3297  df-csb 3393  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-pss 3449  df-nul 3759  df-if 3907  df-pw 3978  df-sn 3994  df-pr 3996  df-tp 3998  df-op 4000  df-uni 4214  df-iun 4295  df-br 4418  df-opab 4476  df-mpt 4477  df-tr 4512  df-eprel 4756  df-id 4760  df-po 4766  df-so 4767  df-fr 4804  df-we 4806  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-pred 5390  df-ord 5436  df-on 5437  df-lim 5438  df-suc 5439  df-iota 5556  df-fun 5594  df-fn 5595  df-f 5596  df-f1 5597  df-fo 5598  df-f1o 5599  df-fv 5600  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-wrecs 7027  df-recs 7089  df-rdg 7127  df-oadd 7185
This theorem is referenced by:  oaord  7247  oaass  7261  odi  7279
  Copyright terms: Public domain W3C validator