MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oaordex Structured version   Unicode version

Theorem oaordex 7002
Description: Existence theorem for ordering of ordinal sum. Similar to Proposition 4.34(f) of [Mendelson] p. 266 and its converse. (Contributed by NM, 12-Dec-2004.)
Assertion
Ref Expression
oaordex  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  e.  B  <->  E. x  e.  On  ( (/) 
e.  x  /\  ( A  +o  x )  =  B ) ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem oaordex
StepHypRef Expression
1 onelss 4766 . . . . 5  |-  ( B  e.  On  ->  ( A  e.  B  ->  A 
C_  B ) )
21adantl 466 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  e.  B  ->  A  C_  B )
)
3 oawordex 7001 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  C_  B  <->  E. x  e.  On  ( A  +o  x )  =  B ) )
42, 3sylibd 214 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  e.  B  ->  E. x  e.  On  ( A  +o  x
)  =  B ) )
5 oaord1 6995 . . . . . . . . . . . . 13  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( (/)  e.  x  <->  A  e.  ( A  +o  x ) ) )
6 eleq2 2504 . . . . . . . . . . . . 13  |-  ( ( A  +o  x )  =  B  ->  ( A  e.  ( A  +o  x )  <->  A  e.  B ) )
75, 6sylan9bb 699 . . . . . . . . . . . 12  |-  ( ( ( A  e.  On  /\  x  e.  On )  /\  ( A  +o  x )  =  B )  ->  ( (/)  e.  x  <->  A  e.  B ) )
87biimprcd 225 . . . . . . . . . . 11  |-  ( A  e.  B  ->  (
( ( A  e.  On  /\  x  e.  On )  /\  ( A  +o  x )  =  B )  ->  (/)  e.  x
) )
98exp4c 608 . . . . . . . . . 10  |-  ( A  e.  B  ->  ( A  e.  On  ->  ( x  e.  On  ->  ( ( A  +o  x
)  =  B  ->  (/) 
e.  x ) ) ) )
109com12 31 . . . . . . . . 9  |-  ( A  e.  On  ->  ( A  e.  B  ->  ( x  e.  On  ->  ( ( A  +o  x
)  =  B  ->  (/) 
e.  x ) ) ) )
1110imp4b 590 . . . . . . . 8  |-  ( ( A  e.  On  /\  A  e.  B )  ->  ( ( x  e.  On  /\  ( A  +o  x )  =  B )  ->  (/)  e.  x
) )
12 simpr 461 . . . . . . . . 9  |-  ( ( x  e.  On  /\  ( A  +o  x
)  =  B )  ->  ( A  +o  x )  =  B )
1312a1i 11 . . . . . . . 8  |-  ( ( A  e.  On  /\  A  e.  B )  ->  ( ( x  e.  On  /\  ( A  +o  x )  =  B )  ->  ( A  +o  x )  =  B ) )
1411, 13jcad 533 . . . . . . 7  |-  ( ( A  e.  On  /\  A  e.  B )  ->  ( ( x  e.  On  /\  ( A  +o  x )  =  B )  ->  ( (/) 
e.  x  /\  ( A  +o  x )  =  B ) ) )
1514expd 436 . . . . . 6  |-  ( ( A  e.  On  /\  A  e.  B )  ->  ( x  e.  On  ->  ( ( A  +o  x )  =  B  ->  ( (/)  e.  x  /\  ( A  +o  x
)  =  B ) ) ) )
1615reximdvai 2831 . . . . 5  |-  ( ( A  e.  On  /\  A  e.  B )  ->  ( E. x  e.  On  ( A  +o  x )  =  B  ->  E. x  e.  On  ( (/)  e.  x  /\  ( A  +o  x
)  =  B ) ) )
1716ex 434 . . . 4  |-  ( A  e.  On  ->  ( A  e.  B  ->  ( E. x  e.  On  ( A  +o  x
)  =  B  ->  E. x  e.  On  ( (/)  e.  x  /\  ( A  +o  x
)  =  B ) ) ) )
1817adantr 465 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  e.  B  ->  ( E. x  e.  On  ( A  +o  x )  =  B  ->  E. x  e.  On  ( (/)  e.  x  /\  ( A  +o  x
)  =  B ) ) ) )
194, 18mpdd 40 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  e.  B  ->  E. x  e.  On  ( (/)  e.  x  /\  ( A  +o  x
)  =  B ) ) )
207biimpd 207 . . . . . . 7  |-  ( ( ( A  e.  On  /\  x  e.  On )  /\  ( A  +o  x )  =  B )  ->  ( (/)  e.  x  ->  A  e.  B ) )
2120exp31 604 . . . . . 6  |-  ( A  e.  On  ->  (
x  e.  On  ->  ( ( A  +o  x
)  =  B  -> 
( (/)  e.  x  ->  A  e.  B )
) ) )
2221com34 83 . . . . 5  |-  ( A  e.  On  ->  (
x  e.  On  ->  (
(/)  e.  x  ->  ( ( A  +o  x
)  =  B  ->  A  e.  B )
) ) )
2322imp4a 589 . . . 4  |-  ( A  e.  On  ->  (
x  e.  On  ->  ( ( (/)  e.  x  /\  ( A  +o  x
)  =  B )  ->  A  e.  B
) ) )
2423rexlimdv 2845 . . 3  |-  ( A  e.  On  ->  ( E. x  e.  On  ( (/)  e.  x  /\  ( A  +o  x
)  =  B )  ->  A  e.  B
) )
2524adantr 465 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( E. x  e.  On  ( (/)  e.  x  /\  ( A  +o  x
)  =  B )  ->  A  e.  B
) )
2619, 25impbid 191 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  e.  B  <->  E. x  e.  On  ( (/) 
e.  x  /\  ( A  +o  x )  =  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   E.wrex 2721    C_ wss 3333   (/)c0 3642   Oncon0 4724  (class class class)co 6096    +o coa 6922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-ral 2725  df-rex 2726  df-reu 2727  df-rmo 2728  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-uni 4097  df-int 4134  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-om 6482  df-recs 6837  df-rdg 6871  df-oadd 6929
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator