MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oaord Structured version   Unicode version

Theorem oaord 7214
Description: Ordering property of ordinal addition. Proposition 8.4 of [TakeutiZaring] p. 58 and its converse. (Contributed by NM, 5-Dec-2004.)
Assertion
Ref Expression
oaord  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  <->  ( C  +o  A )  e.  ( C  +o  B ) ) )

Proof of Theorem oaord
StepHypRef Expression
1 oaordi 7213 . . 3  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  ->  ( C  +o  A
)  e.  ( C  +o  B ) ) )
213adant1 1014 . 2  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  ->  ( C  +o  A )  e.  ( C  +o  B ) ) )
3 oveq2 6304 . . . . . 6  |-  ( A  =  B  ->  ( C  +o  A )  =  ( C  +o  B
) )
43a1i 11 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( A  =  B  ->  ( C  +o  A )  =  ( C  +o  B ) ) )
5 oaordi 7213 . . . . . 6  |-  ( ( A  e.  On  /\  C  e.  On )  ->  ( B  e.  A  ->  ( C  +o  B
)  e.  ( C  +o  A ) ) )
653adant2 1015 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( B  e.  A  ->  ( C  +o  B )  e.  ( C  +o  A ) ) )
74, 6orim12d 838 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  (
( A  =  B  \/  B  e.  A
)  ->  ( ( C  +o  A )  =  ( C  +o  B
)  \/  ( C  +o  B )  e.  ( C  +o  A
) ) ) )
87con3d 133 . . 3  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( -.  ( ( C  +o  A )  =  ( C  +o  B )  \/  ( C  +o  B )  e.  ( C  +o  A ) )  ->  -.  ( A  =  B  \/  B  e.  A )
) )
9 df-3an 975 . . . . . 6  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  <->  ( ( A  e.  On  /\  B  e.  On )  /\  C  e.  On ) )
10 ancom 450 . . . . . 6  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  C  e.  On ) 
<->  ( C  e.  On  /\  ( A  e.  On  /\  B  e.  On ) ) )
11 anandi 828 . . . . . 6  |-  ( ( C  e.  On  /\  ( A  e.  On  /\  B  e.  On ) )  <->  ( ( C  e.  On  /\  A  e.  On )  /\  ( C  e.  On  /\  B  e.  On ) ) )
129, 10, 113bitri 271 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  <->  ( ( C  e.  On  /\  A  e.  On )  /\  ( C  e.  On  /\  B  e.  On ) ) )
13 oacl 7203 . . . . . . 7  |-  ( ( C  e.  On  /\  A  e.  On )  ->  ( C  +o  A
)  e.  On )
14 eloni 4897 . . . . . . 7  |-  ( ( C  +o  A )  e.  On  ->  Ord  ( C  +o  A
) )
1513, 14syl 16 . . . . . 6  |-  ( ( C  e.  On  /\  A  e.  On )  ->  Ord  ( C  +o  A ) )
16 oacl 7203 . . . . . . 7  |-  ( ( C  e.  On  /\  B  e.  On )  ->  ( C  +o  B
)  e.  On )
17 eloni 4897 . . . . . . 7  |-  ( ( C  +o  B )  e.  On  ->  Ord  ( C  +o  B
) )
1816, 17syl 16 . . . . . 6  |-  ( ( C  e.  On  /\  B  e.  On )  ->  Ord  ( C  +o  B ) )
1915, 18anim12i 566 . . . . 5  |-  ( ( ( C  e.  On  /\  A  e.  On )  /\  ( C  e.  On  /\  B  e.  On ) )  -> 
( Ord  ( C  +o  A )  /\  Ord  ( C  +o  B
) ) )
2012, 19sylbi 195 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( Ord  ( C  +o  A
)  /\  Ord  ( C  +o  B ) ) )
21 ordtri2 4922 . . . 4  |-  ( ( Ord  ( C  +o  A )  /\  Ord  ( C  +o  B
) )  ->  (
( C  +o  A
)  e.  ( C  +o  B )  <->  -.  (
( C  +o  A
)  =  ( C  +o  B )  \/  ( C  +o  B
)  e.  ( C  +o  A ) ) ) )
2220, 21syl 16 . . 3  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  (
( C  +o  A
)  e.  ( C  +o  B )  <->  -.  (
( C  +o  A
)  =  ( C  +o  B )  \/  ( C  +o  B
)  e.  ( C  +o  A ) ) ) )
23 eloni 4897 . . . . . 6  |-  ( A  e.  On  ->  Ord  A )
24 eloni 4897 . . . . . 6  |-  ( B  e.  On  ->  Ord  B )
2523, 24anim12i 566 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( Ord  A  /\  Ord  B ) )
26253adant3 1016 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( Ord  A  /\  Ord  B
) )
27 ordtri2 4922 . . . 4  |-  ( ( Ord  A  /\  Ord  B )  ->  ( A  e.  B  <->  -.  ( A  =  B  \/  B  e.  A ) ) )
2826, 27syl 16 . . 3  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  <->  -.  ( A  =  B  \/  B  e.  A )
) )
298, 22, 283imtr4d 268 . 2  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  (
( C  +o  A
)  e.  ( C  +o  B )  ->  A  e.  B )
)
302, 29impbid 191 1  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  <->  ( C  +o  A )  e.  ( C  +o  B ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819   Ord word 4886   Oncon0 4887  (class class class)co 6296    +o coa 7145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-recs 7060  df-rdg 7094  df-oadd 7152
This theorem is referenced by:  oacan  7215  oaword  7216  oaord1  7218  oa00  7226  oalimcl  7227  oaass  7228  odi  7246  oneo  7248  omeulem1  7249  omeulem2  7250  oeeui  7269  omxpenlem  7637  cantnflt  8108  cantnflem1d  8124  cantnflem1  8125  cantnfltOLD  8138  cantnflem1dOLD  8147  cantnflem1OLD  8148
  Copyright terms: Public domain W3C validator