MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oaord Structured version   Unicode version

Theorem oaord 6991
Description: Ordering property of ordinal addition. Proposition 8.4 of [TakeutiZaring] p. 58 and its converse. (Contributed by NM, 5-Dec-2004.)
Assertion
Ref Expression
oaord  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  <->  ( C  +o  A )  e.  ( C  +o  B ) ) )

Proof of Theorem oaord
StepHypRef Expression
1 oaordi 6990 . . 3  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  ->  ( C  +o  A
)  e.  ( C  +o  B ) ) )
213adant1 1006 . 2  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  ->  ( C  +o  A )  e.  ( C  +o  B ) ) )
3 oveq2 6104 . . . . . 6  |-  ( A  =  B  ->  ( C  +o  A )  =  ( C  +o  B
) )
43a1i 11 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( A  =  B  ->  ( C  +o  A )  =  ( C  +o  B ) ) )
5 oaordi 6990 . . . . . 6  |-  ( ( A  e.  On  /\  C  e.  On )  ->  ( B  e.  A  ->  ( C  +o  B
)  e.  ( C  +o  A ) ) )
653adant2 1007 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( B  e.  A  ->  ( C  +o  B )  e.  ( C  +o  A ) ) )
74, 6orim12d 834 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  (
( A  =  B  \/  B  e.  A
)  ->  ( ( C  +o  A )  =  ( C  +o  B
)  \/  ( C  +o  B )  e.  ( C  +o  A
) ) ) )
87con3d 133 . . 3  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( -.  ( ( C  +o  A )  =  ( C  +o  B )  \/  ( C  +o  B )  e.  ( C  +o  A ) )  ->  -.  ( A  =  B  \/  B  e.  A )
) )
9 df-3an 967 . . . . . 6  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  <->  ( ( A  e.  On  /\  B  e.  On )  /\  C  e.  On ) )
10 ancom 450 . . . . . 6  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  C  e.  On ) 
<->  ( C  e.  On  /\  ( A  e.  On  /\  B  e.  On ) ) )
11 anandi 824 . . . . . 6  |-  ( ( C  e.  On  /\  ( A  e.  On  /\  B  e.  On ) )  <->  ( ( C  e.  On  /\  A  e.  On )  /\  ( C  e.  On  /\  B  e.  On ) ) )
129, 10, 113bitri 271 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  <->  ( ( C  e.  On  /\  A  e.  On )  /\  ( C  e.  On  /\  B  e.  On ) ) )
13 oacl 6980 . . . . . . 7  |-  ( ( C  e.  On  /\  A  e.  On )  ->  ( C  +o  A
)  e.  On )
14 eloni 4734 . . . . . . 7  |-  ( ( C  +o  A )  e.  On  ->  Ord  ( C  +o  A
) )
1513, 14syl 16 . . . . . 6  |-  ( ( C  e.  On  /\  A  e.  On )  ->  Ord  ( C  +o  A ) )
16 oacl 6980 . . . . . . 7  |-  ( ( C  e.  On  /\  B  e.  On )  ->  ( C  +o  B
)  e.  On )
17 eloni 4734 . . . . . . 7  |-  ( ( C  +o  B )  e.  On  ->  Ord  ( C  +o  B
) )
1816, 17syl 16 . . . . . 6  |-  ( ( C  e.  On  /\  B  e.  On )  ->  Ord  ( C  +o  B ) )
1915, 18anim12i 566 . . . . 5  |-  ( ( ( C  e.  On  /\  A  e.  On )  /\  ( C  e.  On  /\  B  e.  On ) )  -> 
( Ord  ( C  +o  A )  /\  Ord  ( C  +o  B
) ) )
2012, 19sylbi 195 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( Ord  ( C  +o  A
)  /\  Ord  ( C  +o  B ) ) )
21 ordtri2 4759 . . . 4  |-  ( ( Ord  ( C  +o  A )  /\  Ord  ( C  +o  B
) )  ->  (
( C  +o  A
)  e.  ( C  +o  B )  <->  -.  (
( C  +o  A
)  =  ( C  +o  B )  \/  ( C  +o  B
)  e.  ( C  +o  A ) ) ) )
2220, 21syl 16 . . 3  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  (
( C  +o  A
)  e.  ( C  +o  B )  <->  -.  (
( C  +o  A
)  =  ( C  +o  B )  \/  ( C  +o  B
)  e.  ( C  +o  A ) ) ) )
23 eloni 4734 . . . . . 6  |-  ( A  e.  On  ->  Ord  A )
24 eloni 4734 . . . . . 6  |-  ( B  e.  On  ->  Ord  B )
2523, 24anim12i 566 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( Ord  A  /\  Ord  B ) )
26253adant3 1008 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( Ord  A  /\  Ord  B
) )
27 ordtri2 4759 . . . 4  |-  ( ( Ord  A  /\  Ord  B )  ->  ( A  e.  B  <->  -.  ( A  =  B  \/  B  e.  A ) ) )
2826, 27syl 16 . . 3  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  <->  -.  ( A  =  B  \/  B  e.  A )
) )
298, 22, 283imtr4d 268 . 2  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  (
( C  +o  A
)  e.  ( C  +o  B )  ->  A  e.  B )
)
302, 29impbid 191 1  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  <->  ( C  +o  A )  e.  ( C  +o  B ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   Ord word 4723   Oncon0 4724  (class class class)co 6096    +o coa 6922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-ral 2725  df-rex 2726  df-reu 2727  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-uni 4097  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-om 6482  df-recs 6837  df-rdg 6871  df-oadd 6929
This theorem is referenced by:  oacan  6992  oaword  6993  oaord1  6995  oa00  7003  oalimcl  7004  oaass  7005  odi  7023  oneo  7025  omeulem1  7026  omeulem2  7027  oeeui  7046  omxpenlem  7417  cantnflt  7885  cantnflem1d  7901  cantnflem1  7902  cantnfltOLD  7915  cantnflem1dOLD  7924  cantnflem1OLD  7925
  Copyright terms: Public domain W3C validator