MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oalimcl Structured version   Unicode version

Theorem oalimcl 7201
Description: The ordinal sum with a limit ordinal is a limit ordinal. Proposition 8.11 of [TakeutiZaring] p. 60. (Contributed by NM, 8-Dec-2004.)
Assertion
Ref Expression
oalimcl  |-  ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  ->  Lim  ( A  +o  B ) )

Proof of Theorem oalimcl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limelon 4936 . . 3  |-  ( ( B  e.  C  /\  Lim  B )  ->  B  e.  On )
2 oacl 7177 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  B
)  e.  On )
3 eloni 4883 . . . 4  |-  ( ( A  +o  B )  e.  On  ->  Ord  ( A  +o  B
) )
42, 3syl 16 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  Ord  ( A  +o  B ) )
51, 4sylan2 474 . 2  |-  ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  ->  Ord  ( A  +o  B ) )
6 0ellim 4935 . . . . . 6  |-  ( Lim 
B  ->  (/)  e.  B
)
7 n0i 3785 . . . . . 6  |-  ( (/)  e.  B  ->  -.  B  =  (/) )
86, 7syl 16 . . . . 5  |-  ( Lim 
B  ->  -.  B  =  (/) )
98ad2antll 728 . . . 4  |-  ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  ->  -.  B  =  (/) )
10 oa00 7200 . . . . . . 7  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( A  +o  B )  =  (/)  <->  ( A  =  (/)  /\  B  =  (/) ) ) )
11 simpr 461 . . . . . . 7  |-  ( ( A  =  (/)  /\  B  =  (/) )  ->  B  =  (/) )
1210, 11syl6bi 228 . . . . . 6  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( A  +o  B )  =  (/)  ->  B  =  (/) ) )
1312con3d 133 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( -.  B  =  (/)  ->  -.  ( A  +o  B )  =  (/) ) )
141, 13sylan2 474 . . . 4  |-  ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  ->  ( -.  B  =  (/)  ->  -.  ( A  +o  B )  =  (/) ) )
159, 14mpd 15 . . 3  |-  ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  ->  -.  ( A  +o  B )  =  (/) )
16 vex 3111 . . . . . . . . . . 11  |-  y  e. 
_V
1716sucid 4952 . . . . . . . . . 10  |-  y  e. 
suc  y
18 oalim 7174 . . . . . . . . . . . 12  |-  ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  ->  ( A  +o  B )  =  U_ x  e.  B  ( A  +o  x ) )
19 eqeq1 2466 . . . . . . . . . . . 12  |-  ( ( A  +o  B )  =  suc  y  -> 
( ( A  +o  B )  =  U_ x  e.  B  ( A  +o  x )  <->  suc  y  = 
U_ x  e.  B  ( A  +o  x
) ) )
2018, 19syl5ib 219 . . . . . . . . . . 11  |-  ( ( A  +o  B )  =  suc  y  -> 
( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  ->  suc  y  =  U_ x  e.  B  ( A  +o  x ) ) )
2120imp 429 . . . . . . . . . 10  |-  ( ( ( A  +o  B
)  =  suc  y  /\  ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) ) )  ->  suc  y  = 
U_ x  e.  B  ( A  +o  x
) )
2217, 21syl5eleq 2556 . . . . . . . . 9  |-  ( ( ( A  +o  B
)  =  suc  y  /\  ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) ) )  ->  y  e.  U_ x  e.  B  ( A  +o  x ) )
23 eliun 4325 . . . . . . . . 9  |-  ( y  e.  U_ x  e.  B  ( A  +o  x )  <->  E. x  e.  B  y  e.  ( A  +o  x
) )
2422, 23sylib 196 . . . . . . . 8  |-  ( ( ( A  +o  B
)  =  suc  y  /\  ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) ) )  ->  E. x  e.  B  y  e.  ( A  +o  x
) )
25 onelon 4898 . . . . . . . . . . . . . . . 16  |-  ( ( B  e.  On  /\  x  e.  B )  ->  x  e.  On )
261, 25sylan 471 . . . . . . . . . . . . . . 15  |-  ( ( ( B  e.  C  /\  Lim  B )  /\  x  e.  B )  ->  x  e.  On )
27 onnbtwn 4964 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  On  ->  -.  ( x  e.  B  /\  B  e.  suc  x ) )
28 imnan 422 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  B  ->  -.  B  e.  suc  x )  <->  -.  (
x  e.  B  /\  B  e.  suc  x ) )
2927, 28sylibr 212 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  On  ->  (
x  e.  B  ->  -.  B  e.  suc  x ) )
3029com12 31 . . . . . . . . . . . . . . . 16  |-  ( x  e.  B  ->  (
x  e.  On  ->  -.  B  e.  suc  x
) )
3130adantl 466 . . . . . . . . . . . . . . 15  |-  ( ( ( B  e.  C  /\  Lim  B )  /\  x  e.  B )  ->  ( x  e.  On  ->  -.  B  e.  suc  x ) )
3226, 31mpd 15 . . . . . . . . . . . . . 14  |-  ( ( ( B  e.  C  /\  Lim  B )  /\  x  e.  B )  ->  -.  B  e.  suc  x )
3332ad2antrl 727 . . . . . . . . . . . . 13  |-  ( ( A  e.  On  /\  ( ( ( B  e.  C  /\  Lim  B )  /\  x  e.  B )  /\  y  e.  ( A  +o  x
) ) )  ->  -.  B  e.  suc  x )
34 oacl 7177 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( A  +o  x
)  e.  On )
35 eloni 4883 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  +o  x )  e.  On  ->  Ord  ( A  +o  x
) )
36 ordsucelsuc 6630 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( Ord  ( A  +o  x
)  ->  ( y  e.  ( A  +o  x
)  <->  suc  y  e.  suc  ( A  +o  x
) ) )
3734, 35, 363syl 20 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( y  e.  ( A  +o  x )  <->  suc  y  e.  suc  ( A  +o  x
) ) )
38 oasuc 7166 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( A  +o  suc  x )  =  suc  ( A  +o  x
) )
3938eleq2d 2532 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( suc  y  e.  ( A  +o  suc  x )  <->  suc  y  e. 
suc  ( A  +o  x ) ) )
4037, 39bitr4d 256 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( y  e.  ( A  +o  x )  <->  suc  y  e.  ( A  +o  suc  x ) ) )
4126, 40sylan2 474 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  On  /\  ( ( B  e.  C  /\  Lim  B
)  /\  x  e.  B ) )  -> 
( y  e.  ( A  +o  x )  <->  suc  y  e.  ( A  +o  suc  x ) ) )
42 eleq1 2534 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  +o  B )  =  suc  y  -> 
( ( A  +o  B )  e.  ( A  +o  suc  x
)  <->  suc  y  e.  ( A  +o  suc  x
) ) )
4342bicomd 201 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  +o  B )  =  suc  y  -> 
( suc  y  e.  ( A  +o  suc  x
)  <->  ( A  +o  B )  e.  ( A  +o  suc  x
) ) )
4441, 43sylan9bbr 700 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  +o  B
)  =  suc  y  /\  ( A  e.  On  /\  ( ( B  e.  C  /\  Lim  B
)  /\  x  e.  B ) ) )  ->  ( y  e.  ( A  +o  x
)  <->  ( A  +o  B )  e.  ( A  +o  suc  x
) ) )
451adantr 465 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( B  e.  C  /\  Lim  B )  /\  x  e.  B )  ->  B  e.  On )
46 sucelon 6625 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  e.  On  <->  suc  x  e.  On )
4726, 46sylib 196 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( B  e.  C  /\  Lim  B )  /\  x  e.  B )  ->  suc  x  e.  On )
4845, 47jca 532 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( B  e.  C  /\  Lim  B )  /\  x  e.  B )  ->  ( B  e.  On  /\ 
suc  x  e.  On ) )
49 oaord 7188 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( B  e.  On  /\  suc  x  e.  On  /\  A  e.  On )  ->  ( B  e.  suc  x 
<->  ( A  +o  B
)  e.  ( A  +o  suc  x ) ) )
50493expa 1191 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( B  e.  On  /\ 
suc  x  e.  On )  /\  A  e.  On )  ->  ( B  e. 
suc  x  <->  ( A  +o  B )  e.  ( A  +o  suc  x
) ) )
5148, 50sylan 471 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( B  e.  C  /\  Lim  B
)  /\  x  e.  B )  /\  A  e.  On )  ->  ( B  e.  suc  x  <->  ( A  +o  B )  e.  ( A  +o  suc  x
) ) )
5251ancoms 453 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  On  /\  ( ( B  e.  C  /\  Lim  B
)  /\  x  e.  B ) )  -> 
( B  e.  suc  x 
<->  ( A  +o  B
)  e.  ( A  +o  suc  x ) ) )
5352adantl 466 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  +o  B
)  =  suc  y  /\  ( A  e.  On  /\  ( ( B  e.  C  /\  Lim  B
)  /\  x  e.  B ) ) )  ->  ( B  e. 
suc  x  <->  ( A  +o  B )  e.  ( A  +o  suc  x
) ) )
5444, 53bitr4d 256 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  +o  B
)  =  suc  y  /\  ( A  e.  On  /\  ( ( B  e.  C  /\  Lim  B
)  /\  x  e.  B ) ) )  ->  ( y  e.  ( A  +o  x
)  <->  B  e.  suc  x ) )
5554biimpd 207 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  +o  B
)  =  suc  y  /\  ( A  e.  On  /\  ( ( B  e.  C  /\  Lim  B
)  /\  x  e.  B ) ) )  ->  ( y  e.  ( A  +o  x
)  ->  B  e.  suc  x ) )
5655exp32 605 . . . . . . . . . . . . . . 15  |-  ( ( A  +o  B )  =  suc  y  -> 
( A  e.  On  ->  ( ( ( B  e.  C  /\  Lim  B )  /\  x  e.  B )  ->  (
y  e.  ( A  +o  x )  ->  B  e.  suc  x ) ) ) )
5756com4l 84 . . . . . . . . . . . . . 14  |-  ( A  e.  On  ->  (
( ( B  e.  C  /\  Lim  B
)  /\  x  e.  B )  ->  (
y  e.  ( A  +o  x )  -> 
( ( A  +o  B )  =  suc  y  ->  B  e.  suc  x ) ) ) )
5857imp32 433 . . . . . . . . . . . . 13  |-  ( ( A  e.  On  /\  ( ( ( B  e.  C  /\  Lim  B )  /\  x  e.  B )  /\  y  e.  ( A  +o  x
) ) )  -> 
( ( A  +o  B )  =  suc  y  ->  B  e.  suc  x ) )
5933, 58mtod 177 . . . . . . . . . . . 12  |-  ( ( A  e.  On  /\  ( ( ( B  e.  C  /\  Lim  B )  /\  x  e.  B )  /\  y  e.  ( A  +o  x
) ) )  ->  -.  ( A  +o  B
)  =  suc  y
)
6059exp44 613 . . . . . . . . . . 11  |-  ( A  e.  On  ->  (
( B  e.  C  /\  Lim  B )  -> 
( x  e.  B  ->  ( y  e.  ( A  +o  x )  ->  -.  ( A  +o  B )  =  suc  y ) ) ) )
6160imp 429 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  ->  ( x  e.  B  ->  ( y  e.  ( A  +o  x
)  ->  -.  ( A  +o  B )  =  suc  y ) ) )
6261rexlimdv 2948 . . . . . . . . 9  |-  ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  ->  ( E. x  e.  B  y  e.  ( A  +o  x
)  ->  -.  ( A  +o  B )  =  suc  y ) )
6362adantl 466 . . . . . . . 8  |-  ( ( ( A  +o  B
)  =  suc  y  /\  ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) ) )  ->  ( E. x  e.  B  y  e.  ( A  +o  x
)  ->  -.  ( A  +o  B )  =  suc  y ) )
6424, 63mpd 15 . . . . . . 7  |-  ( ( ( A  +o  B
)  =  suc  y  /\  ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) ) )  ->  -.  ( A  +o  B )  =  suc  y )
6564expcom 435 . . . . . 6  |-  ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  ->  ( ( A  +o  B )  =  suc  y  ->  -.  ( A  +o  B
)  =  suc  y
) )
6665pm2.01d 169 . . . . 5  |-  ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  ->  -.  ( A  +o  B )  =  suc  y )
6766adantr 465 . . . 4  |-  ( ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  /\  y  e.  On )  ->  -.  ( A  +o  B )  =  suc  y )
6867nrexdv 2915 . . 3  |-  ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  ->  -.  E. y  e.  On  ( A  +o  B )  =  suc  y )
69 ioran 490 . . 3  |-  ( -.  ( ( A  +o  B )  =  (/)  \/ 
E. y  e.  On  ( A  +o  B
)  =  suc  y
)  <->  ( -.  ( A  +o  B )  =  (/)  /\  -.  E. y  e.  On  ( A  +o  B )  =  suc  y ) )
7015, 68, 69sylanbrc 664 . 2  |-  ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  ->  -.  ( ( A  +o  B )  =  (/)  \/  E. y  e.  On  ( A  +o  B )  =  suc  y ) )
71 dflim3 6655 . 2  |-  ( Lim  ( A  +o  B
)  <->  ( Ord  ( A  +o  B )  /\  -.  ( ( A  +o  B )  =  (/)  \/ 
E. y  e.  On  ( A  +o  B
)  =  suc  y
) ) )
725, 70, 71sylanbrc 664 1  |-  ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  ->  Lim  ( A  +o  B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1374    e. wcel 1762   E.wrex 2810   (/)c0 3780   U_ciun 4320   Ord word 4872   Oncon0 4873   Lim wlim 4874   suc csuc 4875  (class class class)co 6277    +o coa 7119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-rep 4553  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-ral 2814  df-rex 2815  df-reu 2816  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-tp 4027  df-op 4029  df-uni 4241  df-iun 4322  df-br 4443  df-opab 4501  df-mpt 4502  df-tr 4536  df-eprel 4786  df-id 4790  df-po 4795  df-so 4796  df-fr 4833  df-we 4835  df-ord 4876  df-on 4877  df-lim 4878  df-suc 4879  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6674  df-recs 7034  df-rdg 7068  df-oadd 7126
This theorem is referenced by:  oaass  7202  odi  7220  wunex3  9110
  Copyright terms: Public domain W3C validator