MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oalimcl Structured version   Visualization version   Unicode version

Theorem oalimcl 7279
Description: The ordinal sum with a limit ordinal is a limit ordinal. Proposition 8.11 of [TakeutiZaring] p. 60. (Contributed by NM, 8-Dec-2004.)
Assertion
Ref Expression
oalimcl  |-  ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  ->  Lim  ( A  +o  B ) )

Proof of Theorem oalimcl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limelon 5493 . . 3  |-  ( ( B  e.  C  /\  Lim  B )  ->  B  e.  On )
2 oacl 7255 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  B
)  e.  On )
3 eloni 5440 . . . 4  |-  ( ( A  +o  B )  e.  On  ->  Ord  ( A  +o  B
) )
42, 3syl 17 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  Ord  ( A  +o  B ) )
51, 4sylan2 482 . 2  |-  ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  ->  Ord  ( A  +o  B ) )
6 0ellim 5492 . . . . . 6  |-  ( Lim 
B  ->  (/)  e.  B
)
7 n0i 3727 . . . . . 6  |-  ( (/)  e.  B  ->  -.  B  =  (/) )
86, 7syl 17 . . . . 5  |-  ( Lim 
B  ->  -.  B  =  (/) )
98ad2antll 743 . . . 4  |-  ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  ->  -.  B  =  (/) )
10 oa00 7278 . . . . . . 7  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( A  +o  B )  =  (/)  <->  ( A  =  (/)  /\  B  =  (/) ) ) )
11 simpr 468 . . . . . . 7  |-  ( ( A  =  (/)  /\  B  =  (/) )  ->  B  =  (/) )
1210, 11syl6bi 236 . . . . . 6  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( A  +o  B )  =  (/)  ->  B  =  (/) ) )
1312con3d 140 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( -.  B  =  (/)  ->  -.  ( A  +o  B )  =  (/) ) )
141, 13sylan2 482 . . . 4  |-  ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  ->  ( -.  B  =  (/)  ->  -.  ( A  +o  B )  =  (/) ) )
159, 14mpd 15 . . 3  |-  ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  ->  -.  ( A  +o  B )  =  (/) )
16 vex 3034 . . . . . . . . . . 11  |-  y  e. 
_V
1716sucid 5509 . . . . . . . . . 10  |-  y  e. 
suc  y
18 oalim 7252 . . . . . . . . . . . 12  |-  ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  ->  ( A  +o  B )  =  U_ x  e.  B  ( A  +o  x ) )
19 eqeq1 2475 . . . . . . . . . . . 12  |-  ( ( A  +o  B )  =  suc  y  -> 
( ( A  +o  B )  =  U_ x  e.  B  ( A  +o  x )  <->  suc  y  = 
U_ x  e.  B  ( A  +o  x
) ) )
2018, 19syl5ib 227 . . . . . . . . . . 11  |-  ( ( A  +o  B )  =  suc  y  -> 
( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  ->  suc  y  =  U_ x  e.  B  ( A  +o  x ) ) )
2120imp 436 . . . . . . . . . 10  |-  ( ( ( A  +o  B
)  =  suc  y  /\  ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) ) )  ->  suc  y  = 
U_ x  e.  B  ( A  +o  x
) )
2217, 21syl5eleq 2555 . . . . . . . . 9  |-  ( ( ( A  +o  B
)  =  suc  y  /\  ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) ) )  ->  y  e.  U_ x  e.  B  ( A  +o  x ) )
23 eliun 4274 . . . . . . . . 9  |-  ( y  e.  U_ x  e.  B  ( A  +o  x )  <->  E. x  e.  B  y  e.  ( A  +o  x
) )
2422, 23sylib 201 . . . . . . . 8  |-  ( ( ( A  +o  B
)  =  suc  y  /\  ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) ) )  ->  E. x  e.  B  y  e.  ( A  +o  x
) )
25 onelon 5455 . . . . . . . . . . . . . . . 16  |-  ( ( B  e.  On  /\  x  e.  B )  ->  x  e.  On )
261, 25sylan 479 . . . . . . . . . . . . . . 15  |-  ( ( ( B  e.  C  /\  Lim  B )  /\  x  e.  B )  ->  x  e.  On )
27 onnbtwn 5521 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  On  ->  -.  ( x  e.  B  /\  B  e.  suc  x ) )
28 imnan 429 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  B  ->  -.  B  e.  suc  x )  <->  -.  (
x  e.  B  /\  B  e.  suc  x ) )
2927, 28sylibr 217 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  On  ->  (
x  e.  B  ->  -.  B  e.  suc  x ) )
3029com12 31 . . . . . . . . . . . . . . . 16  |-  ( x  e.  B  ->  (
x  e.  On  ->  -.  B  e.  suc  x
) )
3130adantl 473 . . . . . . . . . . . . . . 15  |-  ( ( ( B  e.  C  /\  Lim  B )  /\  x  e.  B )  ->  ( x  e.  On  ->  -.  B  e.  suc  x ) )
3226, 31mpd 15 . . . . . . . . . . . . . 14  |-  ( ( ( B  e.  C  /\  Lim  B )  /\  x  e.  B )  ->  -.  B  e.  suc  x )
3332ad2antrl 742 . . . . . . . . . . . . 13  |-  ( ( A  e.  On  /\  ( ( ( B  e.  C  /\  Lim  B )  /\  x  e.  B )  /\  y  e.  ( A  +o  x
) ) )  ->  -.  B  e.  suc  x )
34 oacl 7255 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( A  +o  x
)  e.  On )
35 eloni 5440 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  +o  x )  e.  On  ->  Ord  ( A  +o  x
) )
36 ordsucelsuc 6668 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( Ord  ( A  +o  x
)  ->  ( y  e.  ( A  +o  x
)  <->  suc  y  e.  suc  ( A  +o  x
) ) )
3734, 35, 363syl 18 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( y  e.  ( A  +o  x )  <->  suc  y  e.  suc  ( A  +o  x
) ) )
38 oasuc 7244 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( A  +o  suc  x )  =  suc  ( A  +o  x
) )
3938eleq2d 2534 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( suc  y  e.  ( A  +o  suc  x )  <->  suc  y  e. 
suc  ( A  +o  x ) ) )
4037, 39bitr4d 264 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( y  e.  ( A  +o  x )  <->  suc  y  e.  ( A  +o  suc  x ) ) )
4126, 40sylan2 482 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  On  /\  ( ( B  e.  C  /\  Lim  B
)  /\  x  e.  B ) )  -> 
( y  e.  ( A  +o  x )  <->  suc  y  e.  ( A  +o  suc  x ) ) )
42 eleq1 2537 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  +o  B )  =  suc  y  -> 
( ( A  +o  B )  e.  ( A  +o  suc  x
)  <->  suc  y  e.  ( A  +o  suc  x
) ) )
4342bicomd 206 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  +o  B )  =  suc  y  -> 
( suc  y  e.  ( A  +o  suc  x
)  <->  ( A  +o  B )  e.  ( A  +o  suc  x
) ) )
4441, 43sylan9bbr 715 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  +o  B
)  =  suc  y  /\  ( A  e.  On  /\  ( ( B  e.  C  /\  Lim  B
)  /\  x  e.  B ) ) )  ->  ( y  e.  ( A  +o  x
)  <->  ( A  +o  B )  e.  ( A  +o  suc  x
) ) )
451adantr 472 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( B  e.  C  /\  Lim  B )  /\  x  e.  B )  ->  B  e.  On )
46 sucelon 6663 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  e.  On  <->  suc  x  e.  On )
4726, 46sylib 201 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( B  e.  C  /\  Lim  B )  /\  x  e.  B )  ->  suc  x  e.  On )
4845, 47jca 541 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( B  e.  C  /\  Lim  B )  /\  x  e.  B )  ->  ( B  e.  On  /\ 
suc  x  e.  On ) )
49 oaord 7266 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( B  e.  On  /\  suc  x  e.  On  /\  A  e.  On )  ->  ( B  e.  suc  x 
<->  ( A  +o  B
)  e.  ( A  +o  suc  x ) ) )
50493expa 1231 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( B  e.  On  /\ 
suc  x  e.  On )  /\  A  e.  On )  ->  ( B  e. 
suc  x  <->  ( A  +o  B )  e.  ( A  +o  suc  x
) ) )
5148, 50sylan 479 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( B  e.  C  /\  Lim  B
)  /\  x  e.  B )  /\  A  e.  On )  ->  ( B  e.  suc  x  <->  ( A  +o  B )  e.  ( A  +o  suc  x
) ) )
5251ancoms 460 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  On  /\  ( ( B  e.  C  /\  Lim  B
)  /\  x  e.  B ) )  -> 
( B  e.  suc  x 
<->  ( A  +o  B
)  e.  ( A  +o  suc  x ) ) )
5352adantl 473 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  +o  B
)  =  suc  y  /\  ( A  e.  On  /\  ( ( B  e.  C  /\  Lim  B
)  /\  x  e.  B ) ) )  ->  ( B  e. 
suc  x  <->  ( A  +o  B )  e.  ( A  +o  suc  x
) ) )
5444, 53bitr4d 264 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  +o  B
)  =  suc  y  /\  ( A  e.  On  /\  ( ( B  e.  C  /\  Lim  B
)  /\  x  e.  B ) ) )  ->  ( y  e.  ( A  +o  x
)  <->  B  e.  suc  x ) )
5554biimpd 212 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  +o  B
)  =  suc  y  /\  ( A  e.  On  /\  ( ( B  e.  C  /\  Lim  B
)  /\  x  e.  B ) ) )  ->  ( y  e.  ( A  +o  x
)  ->  B  e.  suc  x ) )
5655exp32 616 . . . . . . . . . . . . . . 15  |-  ( ( A  +o  B )  =  suc  y  -> 
( A  e.  On  ->  ( ( ( B  e.  C  /\  Lim  B )  /\  x  e.  B )  ->  (
y  e.  ( A  +o  x )  ->  B  e.  suc  x ) ) ) )
5756com4l 86 . . . . . . . . . . . . . 14  |-  ( A  e.  On  ->  (
( ( B  e.  C  /\  Lim  B
)  /\  x  e.  B )  ->  (
y  e.  ( A  +o  x )  -> 
( ( A  +o  B )  =  suc  y  ->  B  e.  suc  x ) ) ) )
5857imp32 440 . . . . . . . . . . . . 13  |-  ( ( A  e.  On  /\  ( ( ( B  e.  C  /\  Lim  B )  /\  x  e.  B )  /\  y  e.  ( A  +o  x
) ) )  -> 
( ( A  +o  B )  =  suc  y  ->  B  e.  suc  x ) )
5933, 58mtod 182 . . . . . . . . . . . 12  |-  ( ( A  e.  On  /\  ( ( ( B  e.  C  /\  Lim  B )  /\  x  e.  B )  /\  y  e.  ( A  +o  x
) ) )  ->  -.  ( A  +o  B
)  =  suc  y
)
6059exp44 624 . . . . . . . . . . 11  |-  ( A  e.  On  ->  (
( B  e.  C  /\  Lim  B )  -> 
( x  e.  B  ->  ( y  e.  ( A  +o  x )  ->  -.  ( A  +o  B )  =  suc  y ) ) ) )
6160imp 436 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  ->  ( x  e.  B  ->  ( y  e.  ( A  +o  x
)  ->  -.  ( A  +o  B )  =  suc  y ) ) )
6261rexlimdv 2870 . . . . . . . . 9  |-  ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  ->  ( E. x  e.  B  y  e.  ( A  +o  x
)  ->  -.  ( A  +o  B )  =  suc  y ) )
6362adantl 473 . . . . . . . 8  |-  ( ( ( A  +o  B
)  =  suc  y  /\  ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) ) )  ->  ( E. x  e.  B  y  e.  ( A  +o  x
)  ->  -.  ( A  +o  B )  =  suc  y ) )
6424, 63mpd 15 . . . . . . 7  |-  ( ( ( A  +o  B
)  =  suc  y  /\  ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) ) )  ->  -.  ( A  +o  B )  =  suc  y )
6564expcom 442 . . . . . 6  |-  ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  ->  ( ( A  +o  B )  =  suc  y  ->  -.  ( A  +o  B
)  =  suc  y
) )
6665pm2.01d 174 . . . . 5  |-  ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  ->  -.  ( A  +o  B )  =  suc  y )
6766adantr 472 . . . 4  |-  ( ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  /\  y  e.  On )  ->  -.  ( A  +o  B )  =  suc  y )
6867nrexdv 2842 . . 3  |-  ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  ->  -.  E. y  e.  On  ( A  +o  B )  =  suc  y )
69 ioran 498 . . 3  |-  ( -.  ( ( A  +o  B )  =  (/)  \/ 
E. y  e.  On  ( A  +o  B
)  =  suc  y
)  <->  ( -.  ( A  +o  B )  =  (/)  /\  -.  E. y  e.  On  ( A  +o  B )  =  suc  y ) )
7015, 68, 69sylanbrc 677 . 2  |-  ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  ->  -.  ( ( A  +o  B )  =  (/)  \/  E. y  e.  On  ( A  +o  B )  =  suc  y ) )
71 dflim3 6693 . 2  |-  ( Lim  ( A  +o  B
)  <->  ( Ord  ( A  +o  B )  /\  -.  ( ( A  +o  B )  =  (/)  \/ 
E. y  e.  On  ( A  +o  B
)  =  suc  y
) ) )
725, 70, 71sylanbrc 677 1  |-  ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  ->  Lim  ( A  +o  B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    \/ wo 375    /\ wa 376    = wceq 1452    e. wcel 1904   E.wrex 2757   (/)c0 3722   U_ciun 4269   Ord word 5429   Oncon0 5430   Lim wlim 5431   suc csuc 5432  (class class class)co 6308    +o coa 7197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-oadd 7204
This theorem is referenced by:  oaass  7280  odi  7298  wunex3  9184
  Copyright terms: Public domain W3C validator