MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oacl Structured version   Unicode version

Theorem oacl 7084
Description: Closure law for ordinal addition. Proposition 8.2 of [TakeutiZaring] p. 57. (Contributed by NM, 5-May-1995.)
Assertion
Ref Expression
oacl  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  B
)  e.  On )

Proof of Theorem oacl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6207 . . . 4  |-  ( x  =  (/)  ->  ( A  +o  x )  =  ( A  +o  (/) ) )
21eleq1d 2523 . . 3  |-  ( x  =  (/)  ->  ( ( A  +o  x )  e.  On  <->  ( A  +o  (/) )  e.  On ) )
3 oveq2 6207 . . . 4  |-  ( x  =  y  ->  ( A  +o  x )  =  ( A  +o  y
) )
43eleq1d 2523 . . 3  |-  ( x  =  y  ->  (
( A  +o  x
)  e.  On  <->  ( A  +o  y )  e.  On ) )
5 oveq2 6207 . . . 4  |-  ( x  =  suc  y  -> 
( A  +o  x
)  =  ( A  +o  suc  y ) )
65eleq1d 2523 . . 3  |-  ( x  =  suc  y  -> 
( ( A  +o  x )  e.  On  <->  ( A  +o  suc  y
)  e.  On ) )
7 oveq2 6207 . . . 4  |-  ( x  =  B  ->  ( A  +o  x )  =  ( A  +o  B
) )
87eleq1d 2523 . . 3  |-  ( x  =  B  ->  (
( A  +o  x
)  e.  On  <->  ( A  +o  B )  e.  On ) )
9 oa0 7065 . . . . 5  |-  ( A  e.  On  ->  ( A  +o  (/) )  =  A )
109eleq1d 2523 . . . 4  |-  ( A  e.  On  ->  (
( A  +o  (/) )  e.  On  <->  A  e.  On ) )
1110ibir 242 . . 3  |-  ( A  e.  On  ->  ( A  +o  (/) )  e.  On )
12 suceloni 6533 . . . . 5  |-  ( ( A  +o  y )  e.  On  ->  suc  ( A  +o  y
)  e.  On )
13 oasuc 7073 . . . . . 6  |-  ( ( A  e.  On  /\  y  e.  On )  ->  ( A  +o  suc  y )  =  suc  ( A  +o  y
) )
1413eleq1d 2523 . . . . 5  |-  ( ( A  e.  On  /\  y  e.  On )  ->  ( ( A  +o  suc  y )  e.  On  <->  suc  ( A  +o  y
)  e.  On ) )
1512, 14syl5ibr 221 . . . 4  |-  ( ( A  e.  On  /\  y  e.  On )  ->  ( ( A  +o  y )  e.  On  ->  ( A  +o  suc  y )  e.  On ) )
1615expcom 435 . . 3  |-  ( y  e.  On  ->  ( A  e.  On  ->  ( ( A  +o  y
)  e.  On  ->  ( A  +o  suc  y
)  e.  On ) ) )
17 vex 3079 . . . . . 6  |-  x  e. 
_V
18 iunon 6908 . . . . . 6  |-  ( ( x  e.  _V  /\  A. y  e.  x  ( A  +o  y )  e.  On )  ->  U_ y  e.  x  ( A  +o  y
)  e.  On )
1917, 18mpan 670 . . . . 5  |-  ( A. y  e.  x  ( A  +o  y )  e.  On  ->  U_ y  e.  x  ( A  +o  y )  e.  On )
20 oalim 7081 . . . . . . 7  |-  ( ( A  e.  On  /\  ( x  e.  _V  /\ 
Lim  x ) )  ->  ( A  +o  x )  =  U_ y  e.  x  ( A  +o  y ) )
2117, 20mpanr1 683 . . . . . 6  |-  ( ( A  e.  On  /\  Lim  x )  ->  ( A  +o  x )  = 
U_ y  e.  x  ( A  +o  y
) )
2221eleq1d 2523 . . . . 5  |-  ( ( A  e.  On  /\  Lim  x )  ->  (
( A  +o  x
)  e.  On  <->  U_ y  e.  x  ( A  +o  y )  e.  On ) )
2319, 22syl5ibr 221 . . . 4  |-  ( ( A  e.  On  /\  Lim  x )  ->  ( A. y  e.  x  ( A  +o  y
)  e.  On  ->  ( A  +o  x )  e.  On ) )
2423expcom 435 . . 3  |-  ( Lim  x  ->  ( A  e.  On  ->  ( A. y  e.  x  ( A  +o  y )  e.  On  ->  ( A  +o  x )  e.  On ) ) )
252, 4, 6, 8, 11, 16, 24tfinds3 6584 . 2  |-  ( B  e.  On  ->  ( A  e.  On  ->  ( A  +o  B )  e.  On ) )
2625impcom 430 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  B
)  e.  On )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   A.wral 2798   _Vcvv 3076   (/)c0 3744   U_ciun 4278   Oncon0 4826   Lim wlim 4827   suc csuc 4828  (class class class)co 6199    +o coa 7026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4510  ax-sep 4520  ax-nul 4528  ax-pow 4577  ax-pr 4638  ax-un 6481
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2649  df-ral 2803  df-rex 2804  df-reu 2805  df-rab 2807  df-v 3078  df-sbc 3293  df-csb 3395  df-dif 3438  df-un 3440  df-in 3442  df-ss 3449  df-pss 3451  df-nul 3745  df-if 3899  df-pw 3969  df-sn 3985  df-pr 3987  df-tp 3989  df-op 3991  df-uni 4199  df-iun 4280  df-br 4400  df-opab 4458  df-mpt 4459  df-tr 4493  df-eprel 4739  df-id 4743  df-po 4748  df-so 4749  df-fr 4786  df-we 4788  df-ord 4829  df-on 4830  df-lim 4831  df-suc 4832  df-xp 4953  df-rel 4954  df-cnv 4955  df-co 4956  df-dm 4957  df-rn 4958  df-res 4959  df-ima 4960  df-iota 5488  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-ov 6202  df-oprab 6203  df-mpt2 6204  df-om 6586  df-recs 6941  df-rdg 6975  df-oadd 7033
This theorem is referenced by:  omcl  7085  oaord  7095  oacan  7096  oaword  7097  oawordri  7098  oawordeulem  7102  oalimcl  7108  oaass  7109  oaf1o  7111  odi  7127  omopth2  7132  oeoalem  7144  oeoa  7145  oancom  7967  cantnfvalf  7983  dfac12lem2  8423  cdanum  8478  wunex3  9018
  Copyright terms: Public domain W3C validator