MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oa0 Structured version   Unicode version

Theorem oa0 7163
Description: Addition with zero. Proposition 8.3 of [TakeutiZaring] p. 57. (Contributed by NM, 3-May-1995.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
oa0  |-  ( A  e.  On  ->  ( A  +o  (/) )  =  A )

Proof of Theorem oa0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 0elon 4931 . . 3  |-  (/)  e.  On
2 oav 7158 . . 3  |-  ( ( A  e.  On  /\  (/) 
e.  On )  -> 
( A  +o  (/) )  =  ( rec ( ( x  e.  _V  |->  suc  x ) ,  A
) `  (/) ) )
31, 2mpan2 671 . 2  |-  ( A  e.  On  ->  ( A  +o  (/) )  =  ( rec ( ( x  e.  _V  |->  suc  x
) ,  A ) `
 (/) ) )
4 rdg0g 7090 . 2  |-  ( A  e.  On  ->  ( rec ( ( x  e. 
_V  |->  suc  x ) ,  A ) `  (/) )  =  A )
53, 4eqtrd 2508 1  |-  ( A  e.  On  ->  ( A  +o  (/) )  =  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1379    e. wcel 1767   _Vcvv 3113   (/)c0 3785    |-> cmpt 4505   Oncon0 4878   suc csuc 4880   ` cfv 5586  (class class class)co 6282   reccrdg 7072    +o coa 7124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-recs 7039  df-rdg 7073  df-oadd 7131
This theorem is referenced by:  oa1suc  7178  oacl  7182  oa0r  7185  om0r  7186  oawordri  7196  oaord1  7197  oaword1  7198  oawordeulem  7200  oa00  7205  oaass  7207  oarec  7208  odi  7225  oeoalem  7242  nna0  7250  nna0r  7255  nnm0r  7256  nnawordi  7267  cantnflt  8087  cantnfltOLD  8117
  Copyright terms: Public domain W3C validator