MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1sub2 Structured version   Unicode version

Theorem o1sub2 13667
Description: The product of two eventually bounded functions is eventually bounded. (Contributed by Mario Carneiro, 15-Sep-2014.)
Hypotheses
Ref Expression
o1add2.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
o1add2.2  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  V )
o1add2.3  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  O(1) )
o1add2.4  |-  ( ph  ->  ( x  e.  A  |->  C )  e.  O(1) )
Assertion
Ref Expression
o1sub2  |-  ( ph  ->  ( x  e.  A  |->  ( B  -  C
) )  e.  O(1) )
Distinct variable groups:    x, A    ph, x
Allowed substitution hints:    B( x)    C( x)    V( x)

Proof of Theorem o1sub2
StepHypRef Expression
1 o1add2.1 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
21ralrimiva 2846 . . . . . 6  |-  ( ph  ->  A. x  e.  A  B  e.  V )
3 dmmptg 5352 . . . . . 6  |-  ( A. x  e.  A  B  e.  V  ->  dom  (
x  e.  A  |->  B )  =  A )
42, 3syl 17 . . . . 5  |-  ( ph  ->  dom  ( x  e.  A  |->  B )  =  A )
5 o1add2.3 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  O(1) )
6 o1dm 13572 . . . . . 6  |-  ( ( x  e.  A  |->  B )  e.  O(1)  ->  dom  ( x  e.  A  |->  B )  C_  RR )
75, 6syl 17 . . . . 5  |-  ( ph  ->  dom  ( x  e.  A  |->  B )  C_  RR )
84, 7eqsstr3d 3505 . . . 4  |-  ( ph  ->  A  C_  RR )
9 reex 9629 . . . . 5  |-  RR  e.  _V
109ssex 4569 . . . 4  |-  ( A 
C_  RR  ->  A  e. 
_V )
118, 10syl 17 . . 3  |-  ( ph  ->  A  e.  _V )
12 o1add2.2 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  V )
13 eqidd 2430 . . 3  |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B ) )
14 eqidd 2430 . . 3  |-  ( ph  ->  ( x  e.  A  |->  C )  =  ( x  e.  A  |->  C ) )
1511, 1, 12, 13, 14offval2 6562 . 2  |-  ( ph  ->  ( ( x  e.  A  |->  B )  oF  -  ( x  e.  A  |->  C ) )  =  ( x  e.  A  |->  ( B  -  C ) ) )
16 o1add2.4 . . 3  |-  ( ph  ->  ( x  e.  A  |->  C )  e.  O(1) )
17 o1sub 13657 . . 3  |-  ( ( ( x  e.  A  |->  B )  e.  O(1)  /\  ( x  e.  A  |->  C )  e.  O(1) )  ->  ( ( x  e.  A  |->  B )  oF  -  (
x  e.  A  |->  C ) )  e.  O(1) )
185, 16, 17syl2anc 665 . 2  |-  ( ph  ->  ( ( x  e.  A  |->  B )  oF  -  ( x  e.  A  |->  C ) )  e.  O(1) )
1915, 18eqeltrrd 2518 1  |-  ( ph  ->  ( x  e.  A  |->  ( B  -  C
) )  e.  O(1) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    = wceq 1437    e. wcel 1870   A.wral 2782   _Vcvv 3087    C_ wss 3442    |-> cmpt 4484   dom cdm 4854  (class class class)co 6305    oFcof 6543   RRcr 9537    - cmin 9859   O(1)co1 13528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615  ax-pre-sup 9616
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-of 6545  df-om 6707  df-2nd 6808  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-er 7371  df-pm 7483  df-en 7578  df-dom 7579  df-sdom 7580  df-sup 7962  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-div 10269  df-nn 10610  df-2 10668  df-3 10669  df-n0 10870  df-z 10938  df-uz 11160  df-rp 11303  df-ico 11641  df-seq 12211  df-exp 12270  df-cj 13141  df-re 13142  df-im 13143  df-sqrt 13277  df-abs 13278  df-o1 13532
This theorem is referenced by:  mulog2sumlem3  24237  selberg2lem  24251  pntrmax  24265  pntrsumo1  24266  selberg3r  24270  pntrlog2bndlem4  24281
  Copyright terms: Public domain W3C validator