MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1sub Structured version   Unicode version

Theorem o1sub 13085
Description: The difference of two eventually bounded functions is eventually bounded. (Contributed by Mario Carneiro, 15-Sep-2014.) (Proof shortened by Fan Zheng, 14-Jul-2016.)
Assertion
Ref Expression
o1sub  |-  ( ( F  e.  O(1)  /\  G  e.  O(1) )  ->  ( F  oF  -  G
)  e.  O(1) )

Proof of Theorem o1sub
Dummy variables  x  y  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 readdcl 9357 . 2  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  +  y )  e.  RR )
2 subcl 9601 . 2  |-  ( ( m  e.  CC  /\  n  e.  CC )  ->  ( m  -  n
)  e.  CC )
3 simp2l 1014 . . . . . 6  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( m  e.  CC  /\  n  e.  CC )  /\  (
( abs `  m
)  <_  x  /\  ( abs `  n )  <_  y ) )  ->  m  e.  CC )
4 simp2r 1015 . . . . . 6  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( m  e.  CC  /\  n  e.  CC )  /\  (
( abs `  m
)  <_  x  /\  ( abs `  n )  <_  y ) )  ->  n  e.  CC )
53, 4subcld 9711 . . . . 5  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( m  e.  CC  /\  n  e.  CC )  /\  (
( abs `  m
)  <_  x  /\  ( abs `  n )  <_  y ) )  ->  ( m  -  n )  e.  CC )
65abscld 12914 . . . 4  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( m  e.  CC  /\  n  e.  CC )  /\  (
( abs `  m
)  <_  x  /\  ( abs `  n )  <_  y ) )  ->  ( abs `  (
m  -  n ) )  e.  RR )
73abscld 12914 . . . . 5  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( m  e.  CC  /\  n  e.  CC )  /\  (
( abs `  m
)  <_  x  /\  ( abs `  n )  <_  y ) )  ->  ( abs `  m
)  e.  RR )
84abscld 12914 . . . . 5  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( m  e.  CC  /\  n  e.  CC )  /\  (
( abs `  m
)  <_  x  /\  ( abs `  n )  <_  y ) )  ->  ( abs `  n
)  e.  RR )
97, 8readdcld 9405 . . . 4  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( m  e.  CC  /\  n  e.  CC )  /\  (
( abs `  m
)  <_  x  /\  ( abs `  n )  <_  y ) )  ->  ( ( abs `  m )  +  ( abs `  n ) )  e.  RR )
10 simp1l 1012 . . . . 5  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( m  e.  CC  /\  n  e.  CC )  /\  (
( abs `  m
)  <_  x  /\  ( abs `  n )  <_  y ) )  ->  x  e.  RR )
11 simp1r 1013 . . . . 5  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( m  e.  CC  /\  n  e.  CC )  /\  (
( abs `  m
)  <_  x  /\  ( abs `  n )  <_  y ) )  ->  y  e.  RR )
1210, 11readdcld 9405 . . . 4  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( m  e.  CC  /\  n  e.  CC )  /\  (
( abs `  m
)  <_  x  /\  ( abs `  n )  <_  y ) )  ->  ( x  +  y )  e.  RR )
133, 4abs2dif2d 12936 . . . 4  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( m  e.  CC  /\  n  e.  CC )  /\  (
( abs `  m
)  <_  x  /\  ( abs `  n )  <_  y ) )  ->  ( abs `  (
m  -  n ) )  <_  ( ( abs `  m )  +  ( abs `  n
) ) )
14 simp3l 1016 . . . . 5  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( m  e.  CC  /\  n  e.  CC )  /\  (
( abs `  m
)  <_  x  /\  ( abs `  n )  <_  y ) )  ->  ( abs `  m
)  <_  x )
15 simp3r 1017 . . . . 5  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( m  e.  CC  /\  n  e.  CC )  /\  (
( abs `  m
)  <_  x  /\  ( abs `  n )  <_  y ) )  ->  ( abs `  n
)  <_  y )
167, 8, 10, 11, 14, 15le2addd 9949 . . . 4  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( m  e.  CC  /\  n  e.  CC )  /\  (
( abs `  m
)  <_  x  /\  ( abs `  n )  <_  y ) )  ->  ( ( abs `  m )  +  ( abs `  n ) )  <_  ( x  +  y ) )
176, 9, 12, 13, 16letrd 9520 . . 3  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( m  e.  CC  /\  n  e.  CC )  /\  (
( abs `  m
)  <_  x  /\  ( abs `  n )  <_  y ) )  ->  ( abs `  (
m  -  n ) )  <_  ( x  +  y ) )
18173expia 1189 . 2  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( m  e.  CC  /\  n  e.  CC ) )  -> 
( ( ( abs `  m )  <_  x  /\  ( abs `  n
)  <_  y )  ->  ( abs `  (
m  -  n ) )  <_  ( x  +  y ) ) )
191, 2, 18o1of2 13082 1  |-  ( ( F  e.  O(1)  /\  G  e.  O(1) )  ->  ( F  oF  -  G
)  e.  O(1) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    e. wcel 1756   class class class wbr 4287   ` cfv 5413  (class class class)co 6086    oFcof 6313   CCcc 9272   RRcr 9273    + caddc 9277    <_ cle 9411    - cmin 9587   abscabs 12715   O(1)co1 12956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-of 6315  df-om 6472  df-2nd 6573  df-recs 6824  df-rdg 6858  df-er 7093  df-pm 7209  df-en 7303  df-dom 7304  df-sdom 7305  df-sup 7683  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-n0 10572  df-z 10639  df-uz 10854  df-rp 10984  df-ico 11298  df-seq 11799  df-exp 11858  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-o1 12960
This theorem is referenced by:  o1sub2  13095  o1dif  13099  vmadivsum  22711  rpvmasumlem  22716  selberglem1  22774  selberg2  22780  pntrsumo1  22794  selbergr  22797
  Copyright terms: Public domain W3C validator