MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1resb Structured version   Unicode version

Theorem o1resb 13065
Description: The restriction of a function to an unbounded-above interval is eventually bounded iff the original is eventually bounded. (Contributed by Mario Carneiro, 9-Apr-2016.)
Hypotheses
Ref Expression
rlimresb.1  |-  ( ph  ->  F : A --> CC )
rlimresb.2  |-  ( ph  ->  A  C_  RR )
rlimresb.3  |-  ( ph  ->  B  e.  RR )
Assertion
Ref Expression
o1resb  |-  ( ph  ->  ( F  e.  O(1)  <->  ( F  |`  ( B [,) +oo ) )  e.  O(1) ) )

Proof of Theorem o1resb
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 o1res 13059 . 2  |-  ( F  e.  O(1)  ->  ( F  |`  ( B [,) +oo ) )  e.  O(1) )
2 rlimresb.1 . . . . . . 7  |-  ( ph  ->  F : A --> CC )
32feqmptd 5765 . . . . . 6  |-  ( ph  ->  F  =  ( x  e.  A  |->  ( F `
 x ) ) )
43reseq1d 5130 . . . . 5  |-  ( ph  ->  ( F  |`  ( B [,) +oo ) )  =  ( ( x  e.  A  |->  ( F `
 x ) )  |`  ( B [,) +oo ) ) )
5 resmpt3 5178 . . . . 5  |-  ( ( x  e.  A  |->  ( F `  x ) )  |`  ( B [,) +oo ) )  =  ( x  e.  ( A  i^i  ( B [,) +oo ) ) 
|->  ( F `  x
) )
64, 5syl6eq 2491 . . . 4  |-  ( ph  ->  ( F  |`  ( B [,) +oo ) )  =  ( x  e.  ( A  i^i  ( B [,) +oo ) ) 
|->  ( F `  x
) ) )
76eleq1d 2509 . . 3  |-  ( ph  ->  ( ( F  |`  ( B [,) +oo )
)  e.  O(1)  <->  ( x  e.  ( A  i^i  ( B [,) +oo ) ) 
|->  ( F `  x
) )  e.  O(1) ) )
8 inss1 3591 . . . . . 6  |-  ( A  i^i  ( B [,) +oo ) )  C_  A
9 rlimresb.2 . . . . . 6  |-  ( ph  ->  A  C_  RR )
108, 9syl5ss 3388 . . . . 5  |-  ( ph  ->  ( A  i^i  ( B [,) +oo ) ) 
C_  RR )
118sseli 3373 . . . . . 6  |-  ( x  e.  ( A  i^i  ( B [,) +oo )
)  ->  x  e.  A )
12 ffvelrn 5862 . . . . . 6  |-  ( ( F : A --> CC  /\  x  e.  A )  ->  ( F `  x
)  e.  CC )
132, 11, 12syl2an 477 . . . . 5  |-  ( (
ph  /\  x  e.  ( A  i^i  ( B [,) +oo ) ) )  ->  ( F `  x )  e.  CC )
1410, 13elo1mpt 13033 . . . 4  |-  ( ph  ->  ( ( x  e.  ( A  i^i  ( B [,) +oo ) ) 
|->  ( F `  x
) )  e.  O(1)  <->  E. y  e.  RR  E. z  e.  RR  A. x  e.  ( A  i^i  ( B [,) +oo ) ) ( y  <_  x  ->  ( abs `  ( F `  x )
)  <_  z )
) )
15 elin 3560 . . . . . . . . . 10  |-  ( x  e.  ( A  i^i  ( B [,) +oo )
)  <->  ( x  e.  A  /\  x  e.  ( B [,) +oo ) ) )
1615imbi1i 325 . . . . . . . . 9  |-  ( ( x  e.  ( A  i^i  ( B [,) +oo ) )  ->  (
y  <_  x  ->  ( abs `  ( F `
 x ) )  <_  z ) )  <-> 
( ( x  e.  A  /\  x  e.  ( B [,) +oo ) )  ->  (
y  <_  x  ->  ( abs `  ( F `
 x ) )  <_  z ) ) )
17 impexp 446 . . . . . . . . 9  |-  ( ( ( x  e.  A  /\  x  e.  ( B [,) +oo ) )  ->  ( y  <_  x  ->  ( abs `  ( F `  x )
)  <_  z )
)  <->  ( x  e.  A  ->  ( x  e.  ( B [,) +oo )  ->  ( y  <_  x  ->  ( abs `  ( F `  x )
)  <_  z )
) ) )
1816, 17bitri 249 . . . . . . . 8  |-  ( ( x  e.  ( A  i^i  ( B [,) +oo ) )  ->  (
y  <_  x  ->  ( abs `  ( F `
 x ) )  <_  z ) )  <-> 
( x  e.  A  ->  ( x  e.  ( B [,) +oo )  ->  ( y  <_  x  ->  ( abs `  ( F `  x )
)  <_  z )
) ) )
19 impexp 446 . . . . . . . . . 10  |-  ( ( ( x  e.  ( B [,) +oo )  /\  y  <_  x )  ->  ( abs `  ( F `  x )
)  <_  z )  <->  ( x  e.  ( B [,) +oo )  -> 
( y  <_  x  ->  ( abs `  ( F `  x )
)  <_  z )
) )
20 rlimresb.3 . . . . . . . . . . . . . . 15  |-  ( ph  ->  B  e.  RR )
2120ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
y  e.  RR  /\  z  e.  RR )
)  /\  x  e.  A )  ->  B  e.  RR )
229adantr 465 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  A  C_  RR )
2322sselda 3377 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
y  e.  RR  /\  z  e.  RR )
)  /\  x  e.  A )  ->  x  e.  RR )
24 elicopnf 11406 . . . . . . . . . . . . . . 15  |-  ( B  e.  RR  ->  (
x  e.  ( B [,) +oo )  <->  ( x  e.  RR  /\  B  <_  x ) ) )
2524baibd 900 . . . . . . . . . . . . . 14  |-  ( ( B  e.  RR  /\  x  e.  RR )  ->  ( x  e.  ( B [,) +oo )  <->  B  <_  x ) )
2621, 23, 25syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
y  e.  RR  /\  z  e.  RR )
)  /\  x  e.  A )  ->  (
x  e.  ( B [,) +oo )  <->  B  <_  x ) )
2726anbi1d 704 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
y  e.  RR  /\  z  e.  RR )
)  /\  x  e.  A )  ->  (
( x  e.  ( B [,) +oo )  /\  y  <_  x )  <-> 
( B  <_  x  /\  y  <_  x ) ) )
28 simplrl 759 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
y  e.  RR  /\  z  e.  RR )
)  /\  x  e.  A )  ->  y  e.  RR )
29 maxle 11183 . . . . . . . . . . . . 13  |-  ( ( B  e.  RR  /\  y  e.  RR  /\  x  e.  RR )  ->  ( if ( B  <_  y ,  y ,  B
)  <_  x  <->  ( B  <_  x  /\  y  <_  x ) ) )
3021, 28, 23, 29syl3anc 1218 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
y  e.  RR  /\  z  e.  RR )
)  /\  x  e.  A )  ->  ( if ( B  <_  y ,  y ,  B
)  <_  x  <->  ( B  <_  x  /\  y  <_  x ) ) )
3127, 30bitr4d 256 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
y  e.  RR  /\  z  e.  RR )
)  /\  x  e.  A )  ->  (
( x  e.  ( B [,) +oo )  /\  y  <_  x )  <-> 
if ( B  <_ 
y ,  y ,  B )  <_  x
) )
3231imbi1d 317 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  RR  /\  z  e.  RR )
)  /\  x  e.  A )  ->  (
( ( x  e.  ( B [,) +oo )  /\  y  <_  x
)  ->  ( abs `  ( F `  x
) )  <_  z
)  <->  ( if ( B  <_  y , 
y ,  B )  <_  x  ->  ( abs `  ( F `  x ) )  <_ 
z ) ) )
3319, 32syl5bbr 259 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  RR  /\  z  e.  RR )
)  /\  x  e.  A )  ->  (
( x  e.  ( B [,) +oo )  ->  ( y  <_  x  ->  ( abs `  ( F `  x )
)  <_  z )
)  <->  ( if ( B  <_  y , 
y ,  B )  <_  x  ->  ( abs `  ( F `  x ) )  <_ 
z ) ) )
3433pm5.74da 687 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  RR  /\  z  e.  RR ) )  -> 
( ( x  e.  A  ->  ( x  e.  ( B [,) +oo )  ->  ( y  <_  x  ->  ( abs `  ( F `  x )
)  <_  z )
) )  <->  ( x  e.  A  ->  ( if ( B  <_  y ,  y ,  B
)  <_  x  ->  ( abs `  ( F `
 x ) )  <_  z ) ) ) )
3518, 34syl5bb 257 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  RR  /\  z  e.  RR ) )  -> 
( ( x  e.  ( A  i^i  ( B [,) +oo ) )  ->  ( y  <_  x  ->  ( abs `  ( F `  x )
)  <_  z )
)  <->  ( x  e.  A  ->  ( if ( B  <_  y ,  y ,  B )  <_  x  ->  ( abs `  ( F `  x ) )  <_ 
z ) ) ) )
3635ralbidv2 2758 . . . . . 6  |-  ( (
ph  /\  ( y  e.  RR  /\  z  e.  RR ) )  -> 
( A. x  e.  ( A  i^i  ( B [,) +oo ) ) ( y  <_  x  ->  ( abs `  ( F `  x )
)  <_  z )  <->  A. x  e.  A  ( if ( B  <_ 
y ,  y ,  B )  <_  x  ->  ( abs `  ( F `  x )
)  <_  z )
) )
372adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  F : A --> CC )
38 simprl 755 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  RR  /\  z  e.  RR ) )  -> 
y  e.  RR )
3920adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  B  e.  RR )
40 ifcl 3852 . . . . . . . 8  |-  ( ( y  e.  RR  /\  B  e.  RR )  ->  if ( B  <_ 
y ,  y ,  B )  e.  RR )
4138, 39, 40syl2anc 661 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  if ( B  <_  y ,  y ,  B
)  e.  RR )
42 simprr 756 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  RR  /\  z  e.  RR ) )  -> 
z  e.  RR )
43 elo12r 13027 . . . . . . . 8  |-  ( ( ( F : A --> CC  /\  A  C_  RR )  /\  ( if ( B  <_  y , 
y ,  B )  e.  RR  /\  z  e.  RR )  /\  A. x  e.  A  ( if ( B  <_  y ,  y ,  B
)  <_  x  ->  ( abs `  ( F `
 x ) )  <_  z ) )  ->  F  e.  O(1) )
44433expia 1189 . . . . . . 7  |-  ( ( ( F : A --> CC  /\  A  C_  RR )  /\  ( if ( B  <_  y , 
y ,  B )  e.  RR  /\  z  e.  RR ) )  -> 
( A. x  e.  A  ( if ( B  <_  y , 
y ,  B )  <_  x  ->  ( abs `  ( F `  x ) )  <_ 
z )  ->  F  e.  O(1) ) )
4537, 22, 41, 42, 44syl22anc 1219 . . . . . 6  |-  ( (
ph  /\  ( y  e.  RR  /\  z  e.  RR ) )  -> 
( A. x  e.  A  ( if ( B  <_  y , 
y ,  B )  <_  x  ->  ( abs `  ( F `  x ) )  <_ 
z )  ->  F  e.  O(1) ) )
4636, 45sylbid 215 . . . . 5  |-  ( (
ph  /\  ( y  e.  RR  /\  z  e.  RR ) )  -> 
( A. x  e.  ( A  i^i  ( B [,) +oo ) ) ( y  <_  x  ->  ( abs `  ( F `  x )
)  <_  z )  ->  F  e.  O(1) ) )
4746rexlimdvva 2869 . . . 4  |-  ( ph  ->  ( E. y  e.  RR  E. z  e.  RR  A. x  e.  ( A  i^i  ( B [,) +oo ) ) ( y  <_  x  ->  ( abs `  ( F `  x )
)  <_  z )  ->  F  e.  O(1) ) )
4814, 47sylbid 215 . . 3  |-  ( ph  ->  ( ( x  e.  ( A  i^i  ( B [,) +oo ) ) 
|->  ( F `  x
) )  e.  O(1)  ->  F  e.  O(1) ) )
497, 48sylbid 215 . 2  |-  ( ph  ->  ( ( F  |`  ( B [,) +oo )
)  e.  O(1)  ->  F  e.  O(1) ) )
501, 49impbid2 204 1  |-  ( ph  ->  ( F  e.  O(1)  <->  ( F  |`  ( B [,) +oo ) )  e.  O(1) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    e. wcel 1756   A.wral 2736   E.wrex 2737    i^i cin 3348    C_ wss 3349   ifcif 3812   class class class wbr 4313    e. cmpt 4371    |` cres 4863   -->wf 5435   ` cfv 5439  (class class class)co 6112   CCcc 9301   RRcr 9302   +oocpnf 9436    <_ cle 9440   [,)cico 11323   abscabs 12744   O(1)co1 12985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393  ax-cnex 9359  ax-resscn 9360  ax-1cn 9361  ax-icn 9362  ax-addcl 9363  ax-addrcl 9364  ax-mulcl 9365  ax-mulrcl 9366  ax-mulcom 9367  ax-addass 9368  ax-mulass 9369  ax-distr 9370  ax-i2m1 9371  ax-1ne0 9372  ax-1rid 9373  ax-rnegex 9374  ax-rrecex 9375  ax-cnre 9376  ax-pre-lttri 9377  ax-pre-lttrn 9378  ax-pre-ltadd 9379  ax-pre-mulgt0 9380  ax-pre-sup 9381
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-pss 3365  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-tp 3903  df-op 3905  df-uni 4113  df-iun 4194  df-br 4314  df-opab 4372  df-mpt 4373  df-tr 4407  df-eprel 4653  df-id 4657  df-po 4662  df-so 4663  df-fr 4700  df-we 4702  df-ord 4743  df-on 4744  df-lim 4745  df-suc 4746  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-riota 6073  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-om 6498  df-2nd 6599  df-recs 6853  df-rdg 6887  df-er 7122  df-pm 7238  df-en 7332  df-dom 7333  df-sdom 7334  df-sup 7712  df-pnf 9441  df-mnf 9442  df-xr 9443  df-ltxr 9444  df-le 9445  df-sub 9618  df-neg 9619  df-div 10015  df-nn 10344  df-2 10401  df-3 10402  df-n0 10601  df-z 10668  df-uz 10883  df-rp 11013  df-ico 11327  df-seq 11828  df-exp 11887  df-cj 12609  df-re 12610  df-im 12611  df-sqr 12745  df-abs 12746  df-o1 12989  df-lo1 12990
This theorem is referenced by:  chpo1ub  22751  dchrisum0lem2a  22788  pntrsumo1  22836
  Copyright terms: Public domain W3C validator