MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1mul2 Structured version   Unicode version

Theorem o1mul2 13088
Description: The product of two eventually bounded functions is eventually bounded. (Contributed by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
o1add2.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
o1add2.2  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  V )
o1add2.3  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  O(1) )
o1add2.4  |-  ( ph  ->  ( x  e.  A  |->  C )  e.  O(1) )
Assertion
Ref Expression
o1mul2  |-  ( ph  ->  ( x  e.  A  |->  ( B  x.  C
) )  e.  O(1) )
Distinct variable groups:    x, A    ph, x
Allowed substitution hints:    B( x)    C( x)    V( x)

Proof of Theorem o1mul2
StepHypRef Expression
1 o1add2.1 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
21ralrimiva 2791 . . . . . 6  |-  ( ph  ->  A. x  e.  A  B  e.  V )
3 dmmptg 5325 . . . . . 6  |-  ( A. x  e.  A  B  e.  V  ->  dom  (
x  e.  A  |->  B )  =  A )
42, 3syl 16 . . . . 5  |-  ( ph  ->  dom  ( x  e.  A  |->  B )  =  A )
5 o1add2.3 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  O(1) )
6 o1dm 12994 . . . . . 6  |-  ( ( x  e.  A  |->  B )  e.  O(1)  ->  dom  ( x  e.  A  |->  B )  C_  RR )
75, 6syl 16 . . . . 5  |-  ( ph  ->  dom  ( x  e.  A  |->  B )  C_  RR )
84, 7eqsstr3d 3381 . . . 4  |-  ( ph  ->  A  C_  RR )
9 reex 9363 . . . . 5  |-  RR  e.  _V
109ssex 4426 . . . 4  |-  ( A 
C_  RR  ->  A  e. 
_V )
118, 10syl 16 . . 3  |-  ( ph  ->  A  e.  _V )
12 o1add2.2 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  V )
13 eqidd 2436 . . 3  |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B ) )
14 eqidd 2436 . . 3  |-  ( ph  ->  ( x  e.  A  |->  C )  =  ( x  e.  A  |->  C ) )
1511, 1, 12, 13, 14offval2 6327 . 2  |-  ( ph  ->  ( ( x  e.  A  |->  B )  oF  x.  ( x  e.  A  |->  C ) )  =  ( x  e.  A  |->  ( B  x.  C ) ) )
16 o1add2.4 . . 3  |-  ( ph  ->  ( x  e.  A  |->  C )  e.  O(1) )
17 o1mul 13078 . . 3  |-  ( ( ( x  e.  A  |->  B )  e.  O(1)  /\  ( x  e.  A  |->  C )  e.  O(1) )  ->  ( ( x  e.  A  |->  B )  oF  x.  (
x  e.  A  |->  C ) )  e.  O(1) )
185, 16, 17syl2anc 656 . 2  |-  ( ph  ->  ( ( x  e.  A  |->  B )  oF  x.  ( x  e.  A  |->  C ) )  e.  O(1) )
1915, 18eqeltrrd 2510 1  |-  ( ph  ->  ( x  e.  A  |->  ( B  x.  C
) )  e.  O(1) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1364    e. wcel 1757   A.wral 2707   _Vcvv 2964    C_ wss 3318    e. cmpt 4340   dom cdm 4829  (class class class)co 6082    oFcof 6309   RRcr 9271    x. cmul 9277   O(1)co1 12950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1671  ax-6 1709  ax-7 1729  ax-8 1759  ax-9 1761  ax-10 1776  ax-11 1781  ax-12 1793  ax-13 1944  ax-ext 2416  ax-rep 4393  ax-sep 4403  ax-nul 4411  ax-pow 4460  ax-pr 4521  ax-un 6363  ax-cnex 9328  ax-resscn 9329  ax-1cn 9330  ax-icn 9331  ax-addcl 9332  ax-addrcl 9333  ax-mulcl 9334  ax-mulrcl 9335  ax-mulcom 9336  ax-addass 9337  ax-mulass 9338  ax-distr 9339  ax-i2m1 9340  ax-1ne0 9341  ax-1rid 9342  ax-rnegex 9343  ax-rrecex 9344  ax-cnre 9345  ax-pre-lttri 9346  ax-pre-lttrn 9347  ax-pre-ltadd 9348  ax-pre-mulgt0 9349  ax-pre-sup 9350
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1702  df-eu 2260  df-mo 2261  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2966  df-sbc 3178  df-csb 3279  df-dif 3321  df-un 3323  df-in 3325  df-ss 3332  df-pss 3334  df-nul 3628  df-if 3782  df-pw 3852  df-sn 3868  df-pr 3870  df-tp 3872  df-op 3874  df-uni 4082  df-iun 4163  df-br 4283  df-opab 4341  df-mpt 4342  df-tr 4376  df-eprel 4621  df-id 4625  df-po 4630  df-so 4631  df-fr 4668  df-we 4670  df-ord 4711  df-on 4712  df-lim 4713  df-suc 4714  df-xp 4835  df-rel 4836  df-cnv 4837  df-co 4838  df-dm 4839  df-rn 4840  df-res 4841  df-ima 4842  df-iota 5371  df-fun 5410  df-fn 5411  df-f 5412  df-f1 5413  df-fo 5414  df-f1o 5415  df-fv 5416  df-riota 6041  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-of 6311  df-om 6468  df-2nd 6569  df-recs 6820  df-rdg 6854  df-er 7091  df-pm 7207  df-en 7301  df-dom 7302  df-sdom 7303  df-sup 7681  df-pnf 9410  df-mnf 9411  df-xr 9412  df-ltxr 9413  df-le 9414  df-sub 9587  df-neg 9588  df-div 9984  df-nn 10313  df-2 10370  df-3 10371  df-n0 10570  df-z 10637  df-uz 10852  df-rp 10982  df-ico 11296  df-seq 11793  df-exp 11852  df-cj 12574  df-re 12575  df-im 12576  df-sqr 12710  df-abs 12711  df-o1 12954
This theorem is referenced by:  dchrvmasumlem2  22634  dchrvmasumiflem2  22638  dchrisum0fno1  22647  rpvmasum2  22648  dchrisum0lem1  22652  dchrisum0lem2a  22653  dchrisum0lem2  22654  dchrmusumlem  22658  rplogsum  22663  dirith2  22664  mulogsumlem  22667  mulog2sumlem2  22671  mulog2sumlem3  22672  vmalogdivsum2  22674  2vmadivsumlem  22676  selberglem1  22681  selberg3lem1  22693  selberg4lem1  22696  selberg4  22697  selberg3r  22705  selberg4r  22706  selberg34r  22707  pntrlog2bndlem2  22714  pntrlog2bndlem3  22715  pntrlog2bndlem4  22716
  Copyright terms: Public domain W3C validator