MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1mptrcl Structured version   Unicode version

Theorem o1mptrcl 13211
Description: Reverse closure for an eventually bounded function. (Contributed by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
o1add2.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
o1mptrcl.3  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  O(1) )
Assertion
Ref Expression
o1mptrcl  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
Distinct variable groups:    x, A    ph, x
Allowed substitution hints:    B( x)    V( x)

Proof of Theorem o1mptrcl
StepHypRef Expression
1 o1mptrcl.3 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  O(1) )
2 o1f 13118 . . . . 5  |-  ( ( x  e.  A  |->  B )  e.  O(1)  ->  (
x  e.  A  |->  B ) : dom  (
x  e.  A  |->  B ) --> CC )
31, 2syl 16 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  B ) : dom  ( x  e.  A  |->  B ) --> CC )
4 o1add2.1 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
54ralrimiva 2825 . . . . . 6  |-  ( ph  ->  A. x  e.  A  B  e.  V )
6 dmmptg 5436 . . . . . 6  |-  ( A. x  e.  A  B  e.  V  ->  dom  (
x  e.  A  |->  B )  =  A )
75, 6syl 16 . . . . 5  |-  ( ph  ->  dom  ( x  e.  A  |->  B )  =  A )
87feq2d 5648 . . . 4  |-  ( ph  ->  ( ( x  e.  A  |->  B ) : dom  ( x  e.  A  |->  B ) --> CC  <->  ( x  e.  A  |->  B ) : A --> CC ) )
93, 8mpbid 210 . . 3  |-  ( ph  ->  ( x  e.  A  |->  B ) : A --> CC )
10 eqid 2451 . . . 4  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
1110fmpt 5966 . . 3  |-  ( A. x  e.  A  B  e.  CC  <->  ( x  e.  A  |->  B ) : A --> CC )
129, 11sylibr 212 . 2  |-  ( ph  ->  A. x  e.  A  B  e.  CC )
1312r19.21bi 2913 1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   A.wral 2795    |-> cmpt 4451   dom cdm 4941   -->wf 5515   CCcc 9384   O(1)co1 13075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632  ax-un 6475  ax-cnex 9442  ax-resscn 9443
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-rab 2804  df-v 3073  df-sbc 3288  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-nul 3739  df-if 3893  df-pw 3963  df-sn 3979  df-pr 3981  df-op 3985  df-uni 4193  df-br 4394  df-opab 4452  df-mpt 4453  df-id 4737  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-rn 4952  df-res 4953  df-ima 4954  df-iota 5482  df-fun 5521  df-fn 5522  df-f 5523  df-fv 5527  df-ov 6196  df-oprab 6197  df-mpt2 6198  df-pm 7320  df-o1 13079
This theorem is referenced by:  o1le  13241  fsumo1  13386  o1fsum  13387  o1cxp  22494  mulogsum  22907
  Copyright terms: Public domain W3C validator